

oceanenergy.eu f ♥ in ∅

International Wave Update

Donagh Cagney, Policy Director, Ocean Energy Europe

Ocean Energy Europe

- 120 members
- Lead partners:

Global Shifts

Floating wind opportunities

European Green Deal

Energy security is back on the agenda

Stronger Support for Wave

PEUGreenDea

European Commission Commission européenne

Real Property lies

Constant And and

-

#EUGraenD

Com

EU Offshore Renewables Strategy 100 MW by 2025 & 1 GW by 2030

European funding

'Green Deal' call funds 1st wave array 2023-24 calls are circa x3 bigger

Spanish Marine Renewables Strategy

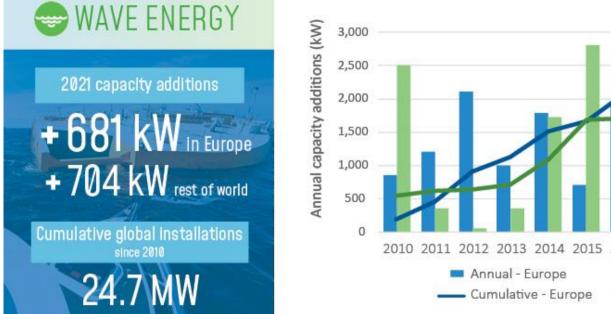
€200m for offshore renewables R&I by 2023

European Commission Commis Italy's Recovery and Resilience Plan €700m for innovative renewables R&I – wave explicitly mentioned

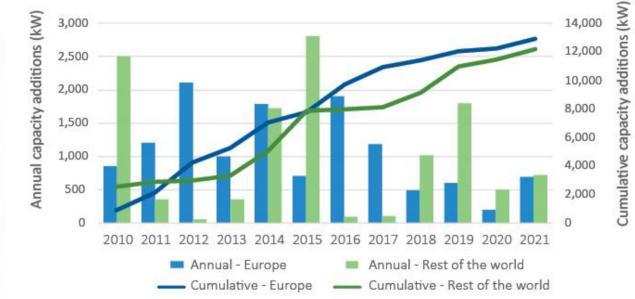
Com

PEUGreenDeal

US Energy Sec Jennifer M. Granholm :


"Harnessing the unrelenting power of the ocean is a clean, innovative, and sustainable way to curtail carbon pollution – benefitting American businesses and families, especially coastal communities hit hardest by the impacts of climate change"

Funding test sites & developers PACWave, WETS ... C-Power, Calwave Ocean Energy (Ireland) ...


Wave Taking Opportunities

Installed global wave energy capacity

Ocean Energy: Key trends and statistics 2021

Improved <u>process</u> of wave development

- Graduated development
- Dry testing
- Performance metrics & certification
- Academic & industrial partnerships
- Designs increasingly informed by:
 - Commercialisation goals
 - Operational needs

Coming imminently ...

-

NEC IN

R. Son Har

Coming imminently ...

Coming imminently

oceanenergy.eu

Stay tuned!

@EuropeanOceanEnergyAssociation

@OceanEnergyEU

european-ocean-energy-association

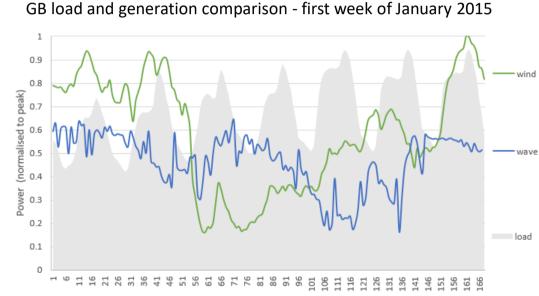
@oceanenergyeurope

System benefits of ocean energy

Shona Pennock WES Annual Conference - May 2022

Supported by:

Scottish Enterprise


Policy and Innovation Group

System benefits of ocean energy

Hypothesis: ocean energy can provide additional benefits to low carbon energy systems due to offsetting of resource with established renewable generation – such as wind and solar PV

The EVOLVE Project

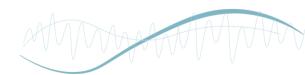
Key question: Can blue energy make an effective contribution to European energy systems and markets, with particular reference to where, what, when, how and at what price?

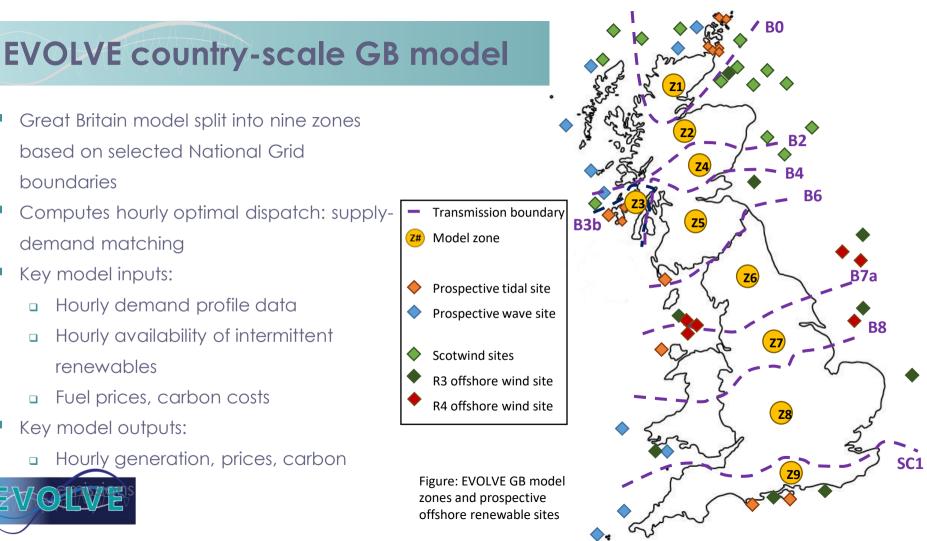
Spatial modelling:

- 250m RADMAPP model of north-west Europe
 - Resource, demand, grid
 - Technical feasibility, cost of delivery, access to markets

Power systems modelling:

- Country-scale studies (GB, IE, PT)
 - Hourly economic dispatch of net zero deployment 2030 to 2050
 - Marginal electricity prices, balancing costs, system security indices
- Microgrid studies (GB)
 - 100% renewable systems
 - Supply-demand matching, storage requirements, system cost





Policy and Innovation Group

GB 2030 Modelling – Leading the Way Scenario

2030 Scenario selected is National Grid's Leading the Way Scenario:

- High renewable scenario:
 - 4x current offshore wind capacity
 - 2x current onshore wind capacity
 - 3x current solar PV capacity
 - Initial demonstration plants for BECCs and Hydrogen
 - No wave or tidal

Technology	LTW		
Biomass	4.36 GW		
BECCS	2.40 GW		
Nuclear	5.64 GW		
Hydrogen	0.39 GW		
Fossil Fuel	27.63 GW		
Solar PV	39.70 GW		
Offshore wind	47.33 GW		
Onshore wind	26.33 GW		
Other renewables	7.09 GW		
Storage	16.26 GW		
Wave & Tidal	0 GW		

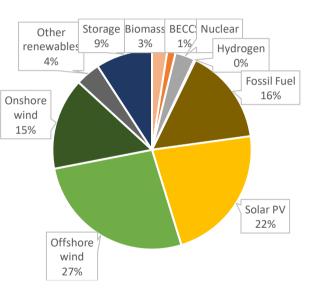
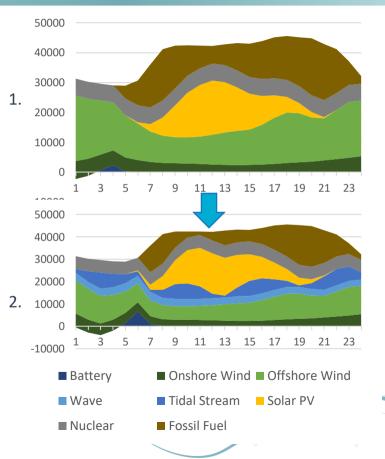
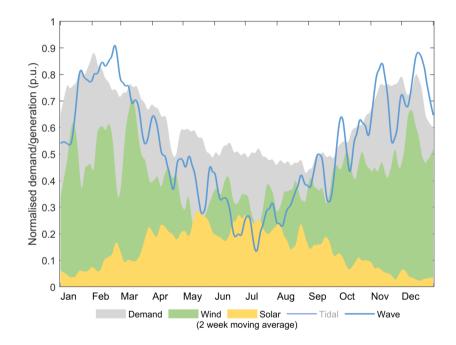


Table: Installed capacities - FES 2030 Leading the Way Scenario

GB 2030 Modelling Results – example summer day

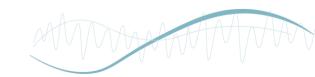
GB 2030 scenario 1 (no marine)
 GB 2030 scenario 2 (15GW marine)


Metric	0GW marine	15GW marine
Average marginal price	£60/MWh	£60/MWh
% renewable generation	61.0%	68.9%
% fossil generation	39.0%	31.1%
Carbon emissions	82.9 ktonnes	56.9 ktonnes


20% reduction in fossil fuel generation

31% reduction in CO2 emissions from

the effect of the second se

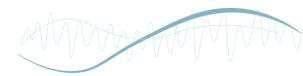

GB 2030 Modelling Results - full year

- Wind generation higher in winter
- Solar generation higher in summer
- Tidal consistently available in cycles
- Wave generation higher in winter coinciding with peak demand

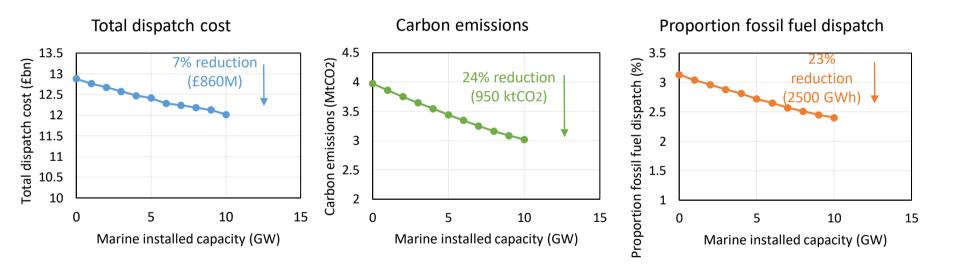
GB 2030 Modelling Results - full year

Scenario 1: 0GW marine, Scenario 2: 1GW marine (0.5GW Wave + 0.5GW Tidal)

Scenario 2 (1GW marine) performs best over all metrics


- 1% lower dispatch cost for marine
 scenario £114M in savings
- 3% lower carbon emissions 113ktonCO2
 in savings
- 300 GWh less gas generation

orage required


Metric	0GW marine	1GW marine	% change
Average marginal price* (£/MWh)	36.87	36.56	-0.84%
Total cost of dispatch** (£bn)	12.88	12.74	-0.89%
% renewable generation	85.59%	85.71%	+0.14%
% fossil generation	3.26%	3.17%	-2.72%
Carbon emissions (MtonCO2)	3.97	3.86	-2.85%

*Marginal price capture represents income from wholesale electricity markets **Total cost of dispatch represents total spend in wholesale electricity markets

GB 2030 Modelling Results - full year

All metrics continue to improve with increasing marine energy installed capacity:

Marine energy installed capacity increases

GB 2030 Modelling Results – Price Capture

Marginal price capture represents income from wholesale electricity markets

- Wave captures highest prices:
 - Over £10/MWh than wind and solar
 - 64% higher price capture with 1GW marine deployment (500MW wave)
 - Still 47% higher price capture with
 10GW marine deployment (5GW

Price capture (£/MWh)	0GW marine	1GW marine	10GW marine
Solar PV	24.28	24.14	21.60
Onshore wind	22.22	21.89	19.72
Offshore wind	25.44	25.19	24.66
Wave	n/a	38.87	34.81
Tidal Stream	n/a	35.32	23.94

System benefits of ocean energy

Summary:

- It is postulated that wave and tidal generation can provide additional value to low carbon energy systems due to offsetting with existing intermittent renewables
- The EVOLVE project is producing quantifiable results to show that marine energy:
 - Reduces system dispatch costs
 - Reduces generation required from fossil fuels
 - Reduces system carbon emissions
 - Captures higher market prices
- Future work will include modelling a number of scenarios for British, Irish and Portuguese systems – including net zero (2050) energy mixes

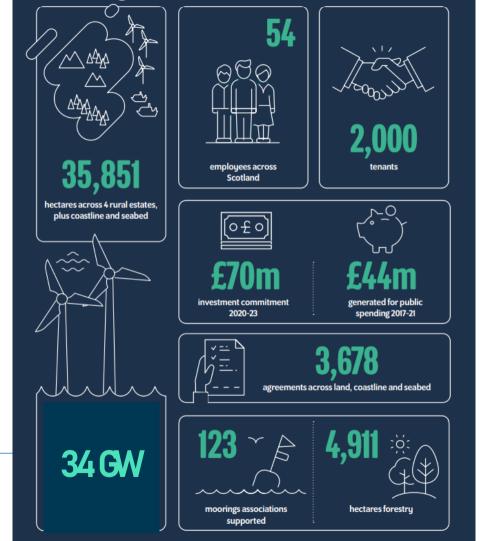
System benefits of ocean Energy

Thanks for your attention!

Shona Pennock – <u>shona.pennock@ed.ac.uk</u>

https://evolveenergy.eu/

This collaborative project has received support under the framework of the OCEANERA-NET COFUND project, with funding provided by the following national/regional funding organisations: Scottish Enterprise, Swedish Energy Agency and Fundação para a Ciência e a Tecnologia.

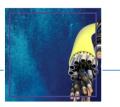

Leasing for Offshore Renewables

Sian Wilson

Wave Energy Scotland May 2022

Who we are and what we do

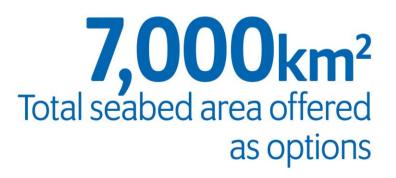
Building the blue economy



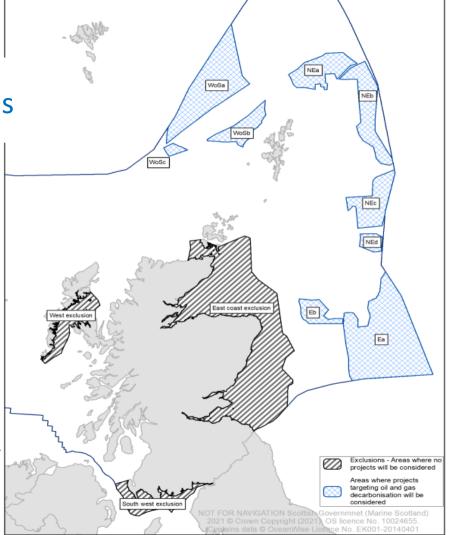
- Offshore renewables
- Ports & harbours
- Marine tourism
- Local energy systems
- Carbon capture & storage
- Oil & gas, telecommunications
- Sustainable aquaculture

Content

- Offshore wind leasing Rounds
- Marine energy open leasing
- What next?



Offshore Wind: ScotWind - Round



Offshore Wind: Innovation and Targeted Oil and Gas electrification - Round

- Decarbonising O&G operations
- Marine Scotland planning consultation led to MS Initial Plan Framework
- Anticipate leasing launch this summer

Offshore Wind: Innovation and Targeted Oil and Gas electrification

Objectives for Offshore Wind Innovation Projects:

- Small scale (less than 100MW)
- To further develop Scotland as a destination for innovation and technical development

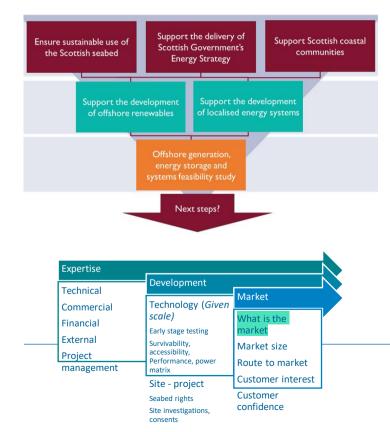
Objectives for Targeted Oil and Gas Projects:

- To maximise the role of offshore wind to reduce emissions from O&G production
- To achieve target installed capacity in a way that delivers best value for Scotland and supply chain opportunity

Wave Energy - Open Process

- <u>Marine@crownestatescotland.co</u> <u>m</u>
- Make an application
 - Up to 3MW (T&D)
 - 3MW to 30MW (Experience required)
- Subject to:
 - competition check
 - Plan HRA check
- Application fee and an Option fee

	Crown Estate Scotland Oighreachd a' Chrùin Alba
Ocean Energy Leasing	
Application Form Part 1 Version 2	
Applicant Name:	
Date Application submit	ted:
OFFICIAL USE ONLY Reference number	
Details	



Wave Energy - What next?

- Type of Leasing: why open process or rounds
- Access seabed at the right time and on the right terms to help projects

Expertise				
	Development			Timing
Technical		Market		 Policy formed
Commercial	Technology (Given scale)	What is the market		
Financial	Early stage testing Survivability, accessibility,	Market size		
External	Performance, power matrix	Route to market		
	Site - project	Customer interest		
Project	Seabed rights	Customer confidence		
management	Site investigations, consents		8	Crown Estate Scotland Oighreachd a' Chrùin Alba

Wave Energy - What next?

• Status of technology (at proven technology scale)

- Increasing technical certainty
- Evidence of power production, survivability, accessibility
- Demonstration of use
- What is solution offered (using proven technology scale)
 - Decarbonisation of a sector?
 - Local community regeneration?

<Discuss>

- 1. Opportunities
- 2. Policy formation and support

Thank you

Sian.Wilson@CrownEstateScotland.com

www.crownestatescotland.com INTEGRITY, COLLABORATION, COMMERCIALISM, EXCELLENCE

Task 12 – Performance Metrics

Working Group call 19th April 2022

Technology Collaboration Programme

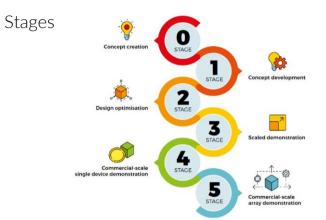
Contents

- International standards
 - IEA-OES Evaluation and Guidance Framework
 - Objectives
 - Stakeholders
 - Benefits
 - IEC Technical Specifications
- Open-source tools

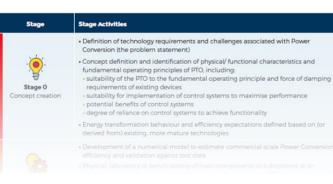
International Electrotechnical Commission

IEA-OES Performance Metrics

• Objectives



Support investment decision making


Guide appropriat e and robust activities

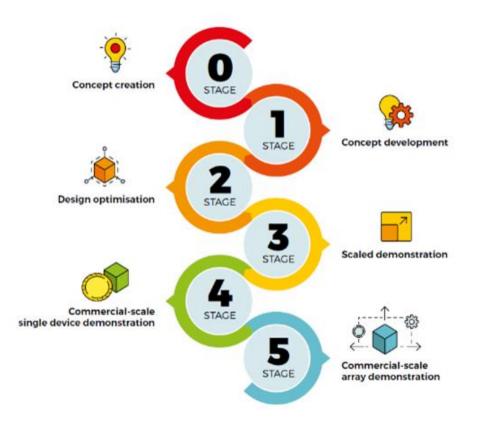
Share knowledge and promote Build international consensus

Stage Activities

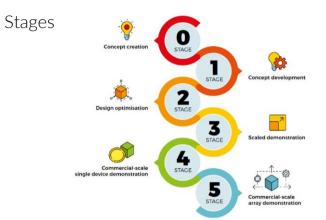
•

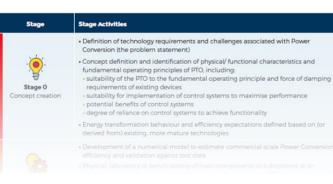
Evaluation Areas

Evaluation Criteria


Evaluation Criteria		Format
Range of acceptable environmental conditions Wave height – H_{ho} and H_{max} Wave period – T_{μ} Wind speed – U_{ho} Tidal current Tidal range or tidal water depth	m s m/s m/s or kt m	Numerical values, upper and lower limits or combinations of conditions
Mean Time to Repair (MTTR, or to maintain) Measure of the time from the start of maintenance - when all resources are available and environmental conditions are within limits - until the system is returned to operation. Mobilisation and transit to site are excluded to remain site independent.	Hours	Numerical values (with minimum and maximum to quantify variance and its impact on availability)

Cost to Repair (or maintain)


• Stages and activities


• Evaluation Areas and criteria (metrics)

Stage Activities

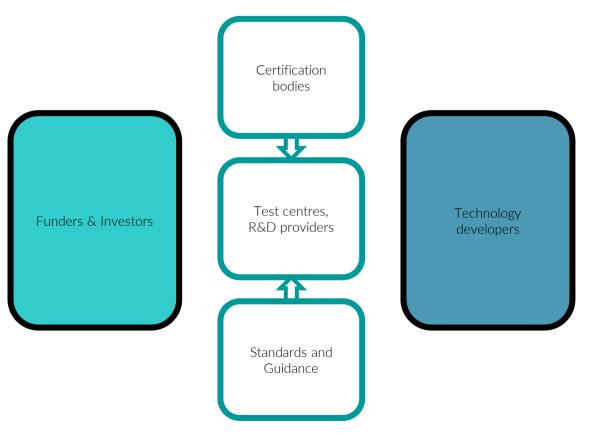
•

Evaluation Areas

Evaluation Criteria

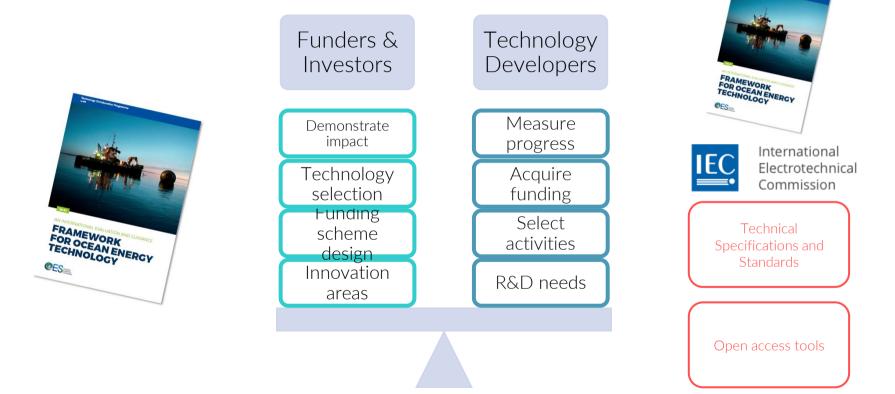
Evaluation Criteria		Format
Range of acceptable environmental conditions Wave height – H_{ho} and H_{max} Wave period – T_{μ} Wind speed – U_{ho} Tidal current Tidal range or tidal water depth	m s m/s m/s or kt m	Numerical values, upper and lower limits or combinations of conditions
Mean Time to Repair (MTTR, or to maintain) Measure of the time from the start of maintenance - when all resources are available and environmental conditions are within limits - until the system is returned to operation. Mobilisation and transit to site are excluded to remain site independent.	Hours	Numerical values (with minimum and maximum to quantify variance and its impact on availability)

Cost to Repair (or maintain)



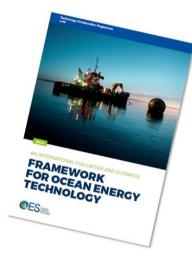
Benefits - Funders & Investors - spoken

- Discrete stages of development enable:
 - Elimination of flawed technology early
 - Focusing of funding on stronger technology
 - Lower financial risk
 - Lower reputational risk
 - Increased contractor motivation
- Stage gate metrics enable:
 - Well defined requirements
 - Regular assessment of technical progress
 - Easier to expose technical risks
 - Enables comparison between technologies
 - Getting benchmark data to quantify and compare the outcomes of programmes/projects
 - · Availability of relevant data and evidence of outcomes/impact
 - Reporting up and out -impact of public funding; Ability to demonstrate transparency and strategic utilization of federal government budget allocations.
 - Competitive programmes possible
 - Well defined scope encourages the formation of consortia for a bid
 - Poor visibility of risks and significant potential losses; metrics provide the ability to quantify the risks and there by limiting losses prior to directing further funding
- Clear stage activities enable
 - Ensuring technology applicants are directed and funded at the appropriate stage (TRL). Metrics in early TRL stages provide predictions on performance and through later TRL stages the predictions are further quantified and validated.
 - Ensuring the right activities are carried out in a project; ability to apply metrics at key development stages that provide a feedback loop in the design process
 - Funding scheme design and budgeting
- Consensus and clarity if international standards enables
 - Higher quality of applications
 - Alignment of expectations
 - More effective evaluation of applications


Stakeholders and contributors

Consensus between stakeholders

IEA-OES Framework vs IEC



TS 62600-200:2013 $\langle \rangle$ TS 62600-201:2015 P H 4 TS 62600-101:2015 AFFORDABILITY TS 62600-103:2018 t ∰ E \oslash 0000 0 🧭 00 EVALUATION AREAS €Ĵ L (+)TS 62600-2:2019 0 TS 62600-10:2020

TS 62600-200:2013

Summary

International Electrotechnical Commission

What?

How?

Consistent open access delivery

Thank you

Technology Collaboration Programme

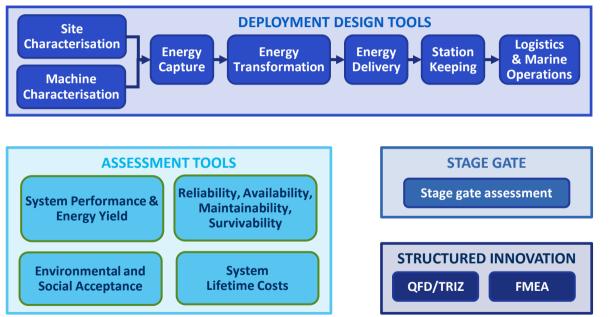
STANDARDS AND OPEN ACCESS TOOLS

Jillian Henderson

WES AC 2022

DTOceanPlus

- An EU project (May 2018 August 2021) with a total budget of 8 million euros.
- A **TRL6** open-source integrated suite of design tools
- Supports the entire technology innovation process, from concept to deployment of sub-systems, energy capture devices and arrays


ttps://www.dtoceanplus.eu/

DTOceanPlus

Available resources

- Digital representation for ocean energy systems
- 33 public reports
- 5 reports detailing market analysis for the ocean energy sector
- 8 open access scientific publications
- 1 global database and 3 open source data sets

Scenario Creation Tool

	Universal paramete								
Input a new Target LCOE in column	oniversar paramete	Default	User input						
ε.	Target LCOE ((/MV		200	Used valu	ies: CAPEX		Used values: Lifetime expenditure		
Dropdown select the 'Degree of	Power capture	4 100	200			0.13			
freedom' and 'Improvement	Degree of freedom	Heave		Strudure:		0.13	Structure:	0.25	0.25
potential' (See User Guide for	Improvement poter		Medium	PT	0		34 PTO:		
definitions of these parameters}	Cost centre breakd		Medium	PI	0.14		PID:		
	Structure 1% of CA			I M	corings:		III Moorings:		
Input new values for the Cost					nnection:		Connection:		
Centre Breakdown in column E.	PTO:	27%		• • • •			connection.	0.10	
ensuring the total adds up to 100%	Moorings:	12%		Ins	tallation: 0.1	12	Installation:		0.20
crowing are cominators up to 10070	Connection:	14%					M80	0.10	0.60
	Installation:	13%				0.27	U GUVC	0.09	
	Total:	100%	0%						
									-
	What if? parameter:	s						Material options Steel	key (#)
		Ranges	Scale (m)	Resource (kV/m)	Efficience (%)	CAPEX (i)		R. Concrete	2
		Lower bound:	10	55	1%	2000000		GRP	3
		Upper bound:	40	65	100%	3000000		Rubber	4
		Number of steps:	10	10	10	10		PU-nylon	5
			Val						
	Shape	Material	Scale (m)	Resource (kV/m)	Efficience (%)	CAPEX (I)		Shape options	key (#)
Color and Manual and Manual P	Shape Cuboid	Material Steel			Efficiency (%)	CAPEX () 2000000		Shape options Cuboid	key (#) 1
Select more 'Shape' and 'Material'			Scale (m)	Resource (k₩/m)					keg (#) 1 2
Select more 'Shape' and 'Material' values to run by using the		Steel	Scale (m) 10.00	Resource (k¥/m) 55.00	1%	2000000		Cuboid	1
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes		Steel	Scale (m) 10.00 13.33	Resource (k¥/m) 55.00 56.11 57.22	1% 12% 23%	2000000 211111 2222222		Cuboid HCylinder VCylinder	1 2
Select more 'Shape' and 'Material' values to run by using the		Steel	Scale (m) 10.00 13.33 16.67 20.00	Resource (KV/m) 55.00 56.11 57.22 58.33	1% 12% 23% 34%	2000000 2111111 2222222 2333333		Cuboid HCylinder	1 2 3
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33	Besource (k¥/m) 55.00 56.11 57.22 58.33 59.44	1% 12% 23% 34% 45%	2000000 2111111 2222222 2333333 2444444		Cuboid HCylinder VCylinder	1 2 3
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67	Resource (k∀/m) 55.00 56.11 57.22 58.33 59.44 60.56	1% 12% 23% 34% 45% 56%	2000000 2111111 2222222 2333333 2444444 2555556	Generate scenarios	Cuboid HCylinder VCylinder Sphere	1 2 3 4
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00	Besource (kV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67	1% 12% 23% 34% 45% 56% 67%	2000000 2111111 2222222 2333333 2444444 2555556 26666667	Generate scenarios and calculate scores	Cuboid HCylinder VCylinder Sphere Power c	1 2 3 4 apture options
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of Values, click the 'Generate		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33	Resource (LV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67 62.78	1% 12% 23% 34% 45% 56% 67% 78%	2000000 2111111 2222222 2333333 244444 2555556 2666667 2777778		Cuboid HCylinder VCylinder Sphere Power o Degree of freedon	1 2 3 4 apture options
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of Values, click the 'Generate scanearios and calculate score'		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33 36.67	Resource (kV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67 62.78 63.89	1% 12% 23% 34% 45% 56% 67% 78% 83%	2000000 2111111 2222222 233333 244444 2555556 2666667 2777778 2688889		Cuboid HCylinder VCylinder Sphere Legree of freedon Heave	1 2 3 4 apture options Improvement poten Low
Select more 'Shape' and Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of Values, click the 'Generate scanearios and calculate scores' button.		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33	Resource (LV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67 62.78	1% 12% 23% 34% 45% 56% 67% 78%	2000000 2111111 2222222 2333333 244444 2555556 2666667 2777778	and calculate scores	Cuboid HCylinder VCylinder Sphere Degree of freedon Heave Surge	1 2 3 4 apture options Improvement poten Low Medium
Select more 'Shape' and 'Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of Values, click the 'Generate scanearios and calculate score'		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33 36.67	Resource (kV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67 62.78 63.89	1% 12% 23% 34% 45% 56% 67% 78% 83%	2000000 2111111 2222222 233333 244444 2555556 2666667 2777778 2688889		Cuboid HCglinder VCglinder Sphere Degree of freedom Heave Surge Pitch	1 2 3 4 apture options Improvement poten Low
Select more 'Shape' and Material' values to run by using the dropdown here - several Shapes and Materials can be chosen in the When satisfied with this table of Values, click the 'Generate scanearios and calculate scores' button.		Steel	Scale (m) 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33 36.67	Resource (kV/m) 55.00 56.11 57.22 58.33 59.44 60.56 61.67 62.78 63.89	1% 12% 23% 34% 45% 56% 67% 78% 83%	2000000 2111111 2222222 233333 244444 2555556 2666667 2777778 2688889	and calculate scores	Cuboid HCylinder VCylinder Sphere Degree of freedon Heave Surge	1 2 3 4 apture options Improvement poten Low Medium

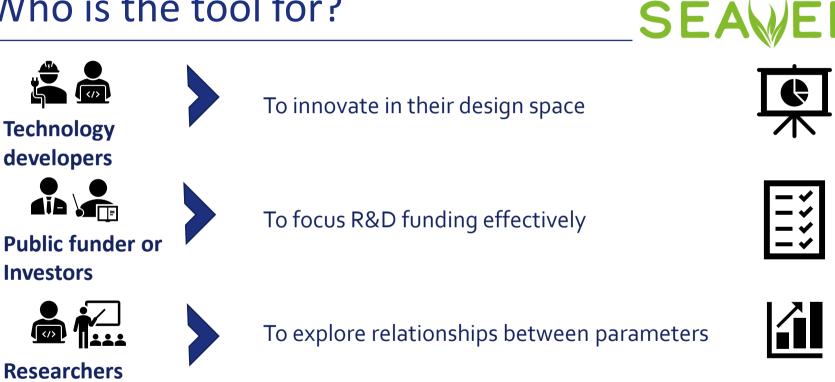
https://tinyurl.com/ynp2vpr3

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 785921.

Why does the wave energy sector need this tool?

- There are many wave energy device ideas being developed but there is currently no way of guiding the initial 'concept creation' stage
- Bringing together all the knowledge we've gained from industry and the WES programme – how to create the next generation of wave energy devices?
- Using **optioneering**, this tool guides the initial concept design to point you in the right direction of your invention process

Objective of the tool


- Identify attractive business case scenarios for exploitation of wave energy resources
- Identify areas requiring technology development funding to facilitate this exploitation
- Going beyond what already exists to what is possible or could be achievable

Who is the tool for?

PROJECT

//tinyurl.com/ynp2vpr3

What does the tool do?

INPUTS

Choices: Degree of freedom Target LCOE Materials Shapes Ranges: Scale CAPEX Resource Efficiency

FILTERS

- Attractive
- Attractive & possible
- Attractive, possible and achievable

All scenarios

Filtered scenarios

PROJECT

OUTPUTS

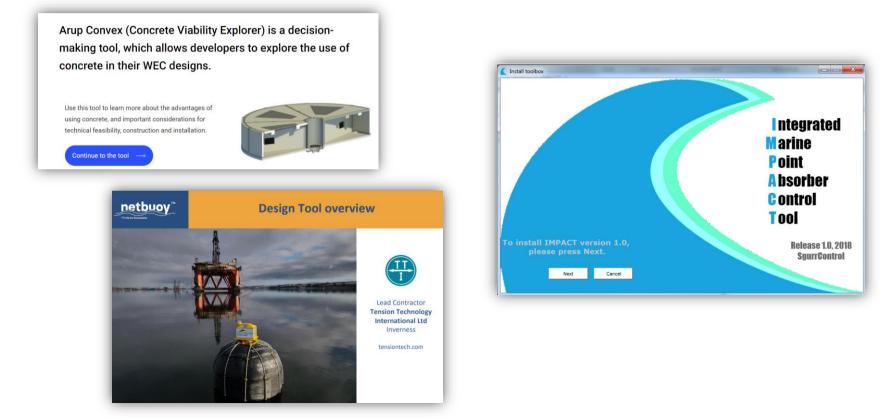
- Commercial attractiveness (CA) score
- Technical Achievability (TA) score

Output top 10 results

https://tinyurl.com/ynp2vpr3

Other tools

IDCORE ENGD - OPERATIONS AND MAINTENANCE SIMULATION TOOL


O&M Simulation Tool

LEVELISED COST OF ENERGY TOOL

LCOE Tool - "WEC Developer" Users

Tools emerging from the WES programme

Summary

- Building consensus on evaluation processes for wave energy helps to accelerate the sector through moving towards same goals
- This shapes the standards we use in industry for development and testing
- The standards are facilitated with the use of tools to enable stakeholders to design and evaluated wave energy systems
- A common approach is the key to success

THANK YOU

Jonathan Hodges and Jillian Henderson

Twitter LinkedIn @WaveEnergyScot
waveenergyscotland

