
 

Revision 1 

Wave Energy Scotland 

 

 

Operations and Maintenance 

Simulation Tool 

Functionality Report 

 

This report details the purpose and functionality of an Excel-based tool for simulating the 

operations and maintenance (O&M) phase of wave energy arrays. The tool is intended to provide 

developers of wave energy technology with the framework to estimate operational expenditure 

and undertake sensitivity studies into the design of their devices and O&M strategies. Every aspect 

of the code which forms the basis of the tool is described in detail. An index is provided from page 

155 as a form of reference guide for the document. The work has stemmed from an Engineering 

Doctorate sponsored by Wave Energy Scotland in partnership with the Industrial Doctoral Centre 

for Offshore Renewable Energy. 

 

 

Related documents 

 WES 2017. Operations and Maintenance Simulation Tool. MS Excel (Macro-Enabled) 

 WES 2017. Operations and Maintenance Simulation Tool - Weather Simulation Report. PDF 

 WES 2017. Operations and Maintenance Simulation Tool - User Guide. PDF 

 WES 2017. Operations and Maintenance Simulation Tool - Future Upgrades. PDF 



 

Page 2 of 169 

 

CONTENTS 

1 INTRODUCTION........................................................................................................ 11 

2 TERMINOLOGY ......................................................................................................... 12 

2.1 VBA TERMINOLOGY ..................................................................................................... 13 

3 MODEL STRUCTURE ................................................................................................. 14 

4 MODEL INPUTS ........................................................................................................ 15 

4.1 INPUTS SHEET .............................................................................................................. 15 

4.1.1 Universal Inputs ................................................................................................. 15 

4.1.2 Fault categories ................................................................................................. 17 

4.1.3 Scheduled maintenance .................................................................................... 20 

4.2 VESSELS SHEET ............................................................................................................. 22 

4.3 LABOUR SHEET ............................................................................................................. 23 

4.4 OPERATIONAL LIMITS SHEET ....................................................................................... 23 

4.5 POWER SHEET .............................................................................................................. 25 

4.6 DAYLIGHT SHEET .......................................................................................................... 25 

4.7 WEATHER SHEET .......................................................................................................... 25 

4.8 HINDCAST SHEET.......................................................................................................... 26 

5 PROCESSES .............................................................................................................. 27 

5.1 FAST RUN ..................................................................................................................... 27 

5.2 FULL RUN ..................................................................................................................... 27 

5.3 STAT RUN ..................................................................................................................... 27 

6 MODEL OUTPUTS ..................................................................................................... 29 

6.1 RESULTS SHEET ............................................................................................................ 29 

6.2 RUN SHEETS ................................................................................................................. 31 

6.3 STATISTICAL SHEETS..................................................................................................... 33 

7 MODEL ALGORITHMS AND VBA CODE ...................................................................... 34 

7.1 FUNCTIONS .................................................................................................................. 36 

7.1.1 Defining new types ............................................................................................ 36 

7.1.2 Insert sheet ........................................................................................................ 36 

7.1.3 Timer .................................................................................................................. 36 

7.1.4 Delete run sheets .............................................................................................. 37 



 

Page 3 of 169 

 

7.1.5 Delete statistical sheets ..................................................................................... 37 

7.1.6 Delete this sheet ................................................................................................ 37 

7.1.7 Max and min ...................................................................................................... 37 

7.1.8 Terminate program ........................................................................................... 38 

7.1.9 Is in array ........................................................................................................... 38 

7.1.10 String array and 2d array ................................................................................... 38 

7.1.11 Number of rows ................................................................................................. 38 

7.1.12 Order a 2d array ................................................................................................ 38 

7.1.13 Workbook open ................................................................................................. 39 

7.1.14 Column letter ..................................................................................................... 39 

7.1.15 Delete charts...................................................................................................... 40 

7.1.16 Find index reference .......................................................................................... 40 

7.1.17 Round all decimals ............................................................................................. 40 

7.2 RUN PROGRAM ............................................................................................................ 41 

7.2.1 Global variables and constants .......................................................................... 41 

7.2.2 Start lifetime simulation .................................................................................... 42 

7.2.3 Run main program ............................................................................................. 42 

7.2.4 Set up class ........................................................................................................ 43 

7.2.5 Post process ....................................................................................................... 45 

7.2.6 Copy weather data ............................................................................................ 45 

7.2.7 Statistical run ..................................................................................................... 46 

7.3 FAILURE PARAMETERS ................................................................................................. 48 

7.3.1 Start ................................................................................................................... 48 

7.3.2 Error finder ........................................................................................................ 49 

7.4 MAINTENANCE PARAMETERS ...................................................................................... 49 

7.4.1 Start ................................................................................................................... 49 

7.5 MAINTENANCE MANAGER .......................................................................................... 50 

7.5.1 Defining class modules ...................................................................................... 50 

7.5.2 Start ................................................................................................................... 50 

7.5.3 Insert run sheets ................................................................................................ 51 

7.5.4 Determine failure .............................................................................................. 51 

7.5.5 Determine fix ..................................................................................................... 51 

7.5.6 Determine actual fix .......................................................................................... 51 

7.5.7 Print interval ...................................................................................................... 52 



 

Page 4 of 169 

 

7.5.8 Next interval ...................................................................................................... 52 

7.5.9 Post process ....................................................................................................... 53 

7.6 WEATHER ..................................................................................................................... 54 

7.6.1 Start ................................................................................................................... 54 

7.6.2 Get this window ................................................................................................. 55 

7.6.3 Daylight hours .................................................................................................... 56 

7.6.4 Print interval ...................................................................................................... 56 

7.6.5 Longest daylight window ................................................................................... 56 

7.7 REVENUE ...................................................................................................................... 57 

7.7.1 Start ................................................................................................................... 57 

7.7.2 Get power .......................................................................................................... 58 

7.7.3 Get revenue information ................................................................................... 58 

7.7.4 Update revenue ................................................................................................. 58 

7.7.5 Draw .................................................................................................................. 59 

7.7.6 Revenue estimate .............................................................................................. 59 

7.8 VESSELS ........................................................................................................................ 60 

7.8.1 Start ................................................................................................................... 60 

7.8.2 Get functions ..................................................................................................... 61 

7.8.3 Check availability ............................................................................................... 61 

7.8.4 Mobilise boat ..................................................................................................... 61 

7.8.5 Demobilise boat ................................................................................................. 61 

7.8.6 Calculate hire fees for an operation .................................................................. 61 

7.8.7 Calculate fuel costs for an operation ................................................................. 62 

7.8.8 Add operation costs ........................................................................................... 62 

7.8.9 Print interval ...................................................................................................... 62 

7.8.10 Post process ....................................................................................................... 62 

7.9 PARTS ........................................................................................................................... 63 

7.9.1 Start ................................................................................................................... 63 

7.9.2 Order new parts, if available ............................................................................. 64 

7.9.3 Multiple replacement types .............................................................................. 65 

7.9.4 Multiple parts types available ........................................................................... 65 

7.9.5 Correct type name ............................................................................................. 65 

7.9.6 This type ID ........................................................................................................ 65 

7.9.7 Next interval ...................................................................................................... 65 



 

Page 5 of 169 

 

7.9.8 Print interval ...................................................................................................... 66 

7.10 DELAYS ......................................................................................................................... 66 

7.10.1 Start ................................................................................................................... 66 

7.10.2 Add this delay .................................................................................................... 66 

7.11 HINDCAST ..................................................................................................................... 67 

7.11.1 Start ................................................................................................................... 67 

7.11.2 Rounded value ................................................................................................... 69 

7.11.3 This window open .............................................................................................. 70 

7.11.4 This daylight window open ................................................................................ 70 

7.11.5 Get functions ..................................................................................................... 71 

7.12 COST-BENEFIT ANALYSIS .............................................................................................. 71 

7.12.1 Start ................................................................................................................... 72 

7.12.2 Create full list ..................................................................................................... 72 

7.12.3 Worth retrieving WEC ....................................................................................... 73 

7.12.4 Worth repairing WEC ......................................................................................... 75 

7.12.5 Order this list ..................................................................................................... 75 

7.13 ARRAY OBJECT ............................................................................................................. 76 

7.13.1 Start ................................................................................................................... 77 

7.13.2 Determine failure .............................................................................................. 77 

7.13.3 Determine fix ..................................................................................................... 78 

7.13.4 Attempt fix ......................................................................................................... 79 

7.13.5 Update array power .......................................................................................... 82 

7.13.6 Hours offshore for subsea work ........................................................................ 82 

7.13.7 Next interval ...................................................................................................... 83 

7.13.8 Assign lost revenue for failures and maintenance ............................................ 84 

7.13.9 Power loss from failures .................................................................................... 87 

7.13.10 Power loss from failures that need retrieval ..................................................... 87 

7.13.11 Calculate failures share ..................................................................................... 88 

7.13.12 Print interval ...................................................................................................... 88 

7.13.13 Post process ....................................................................................................... 89 

7.13.14 Get functions ..................................................................................................... 89 

7.14 WEC OBJECT ................................................................................................................. 89 

7.14.1 Start ................................................................................................................... 91 

7.14.2 Determine failure .............................................................................................. 92 



 

Page 6 of 169 

 

7.14.3 Set for scheduled maintenance ......................................................................... 92 

7.14.4 Attempt fix ......................................................................................................... 93 

7.14.5 Number of onsite technicians required ............................................................. 96 

7.14.6 Any failures need retrieval ................................................................................ 97 

7.14.7 Longest time offshore........................................................................................ 97 

7.14.8 Calmest limits for operations ............................................................................ 98 

7.14.9 Calculate intervals offsite .................................................................................. 98 

7.14.10 Part to replace ................................................................................................... 99 

7.14.11 Full window open .............................................................................................. 99 

7.14.12 Assign vessel costs output ............................................................................... 100 

7.14.13 Failures time share array ................................................................................. 101 

7.14.14 Next interval .................................................................................................... 102 

7.14.15 Try assigning replacement parts ...................................................................... 106 

7.14.16 Array of retrieval failures ................................................................................. 107 

7.14.17 Array of due maintenance categories ............................................................. 107 

7.14.18 Assign offsite technicians ................................................................................ 107 

7.14.19 Offsite tasks array ............................................................................................ 108 

7.14.20 Print interval .................................................................................................... 109 

7.14.21 Return actions required ................................................................................... 110 

7.14.22 Return onsite action priority ........................................................................... 111 

7.14.23 Vessel for action .............................................................................................. 111 

7.14.24 Return ID of vessel to use ................................................................................ 112 

7.14.25 Return action failures ...................................................................................... 112 

7.14.26 Get total costs .................................................................................................. 112 

7.14.27 Maximum severity of failures .......................................................................... 112 

7.14.28 Major and intermediate failures ..................................................................... 113 

7.14.29 Time until repaired .......................................................................................... 113 

7.14.30 Installation time ............................................................................................... 114 

7.14.31 Find installation vessel ID ................................................................................ 114 

7.14.32 Intervals to next maintenance ......................................................................... 115 

7.14.33 Number of retrieval failures ............................................................................ 116 

7.14.34 This maintenance ready .................................................................................. 116 

7.14.35 Any maintenance delayed ............................................................................... 117 



 

Page 7 of 169 

 

7.14.36 Get functions ................................................................................................... 117 

7.15 TECHNICIANS ............................................................................................................. 118 

7.15.1 Start ................................................................................................................. 118 

7.15.2 Add technicians working ................................................................................. 119 

7.15.3 Add contractor fees ......................................................................................... 119 

7.15.4 Next interval .................................................................................................... 120 

7.15.5 Print interval .................................................................................................... 120 

7.15.6 Get functions ................................................................................................... 120 

7.15.7 Output procedures .......................................................................................... 120 

7.16 FAILURES OBJECTS ..................................................................................................... 121 

7.16.1 Array failures list .............................................................................................. 121 

7.16.2 Array failures ................................................................................................... 122 

7.16.3 WEC failures list ............................................................................................... 122 

7.16.4 WEC failures ..................................................................................................... 123 

7.16.5 Failure number object ..................................................................................... 123 

7.17 ARRAY OUTPUTS LIST ................................................................................................. 124 

7.17.1 Start ................................................................................................................. 124 

7.17.2 Add failure and maintenance costs ................................................................. 124 

7.17.3 Add availability ................................................................................................ 124 

7.17.4 Draw ................................................................................................................ 125 

7.17.5 Calculate end ................................................................................................... 125 

7.17.6 Post process procedures ................................................................................. 125 

7.17.7 Draw all WECs .................................................................................................. 126 

7.17.8 Set total costs .................................................................................................. 126 

7.17.9 Get functions ................................................................................................... 126 

7.18 WEC OUTPUT LIST ...................................................................................................... 127 

7.18.1 Start ................................................................................................................. 127 

7.18.2 Add failure and maintenance costs ................................................................. 127 

7.18.3 Add availability ................................................................................................ 127 

7.18.4 Draw ................................................................................................................ 128 

7.18.5 Calculate end ................................................................................................... 128 

7.18.6 Post process procedures ................................................................................. 128 

7.18.7 Run title ........................................................................................................... 128 

7.18.8 Get functions ................................................................................................... 129 



 

Page 8 of 169 

 

7.19 WEC OUTPUT ............................................................................................................. 129 

7.19.1 Start ................................................................................................................. 129 

7.19.2 Set and get values ............................................................................................ 129 

7.19.3 Add costs ......................................................................................................... 129 

7.19.4 Number of parameters .................................................................................... 129 

7.20 REVENUE OUTPUT ..................................................................................................... 130 

7.20.1 Draw ................................................................................................................ 130 

7.20.2 Run title ........................................................................................................... 130 

7.20.3 Calculate end ................................................................................................... 131 

7.20.4 Post process procedures ................................................................................. 131 

7.20.5 Set and get revenue output ............................................................................. 131 

7.21 TECHNICIANS OUTPUT ............................................................................................... 131 

7.21.1 Draw ................................................................................................................ 132 

7.21.2 Run title ........................................................................................................... 132 

7.21.3 Calculate end ................................................................................................... 132 

7.21.4 Post process contractor fees ........................................................................... 132 

7.21.5 Add contractor fees ......................................................................................... 133 

7.21.6 Set and get technicians output ........................................................................ 133 

7.22 VESSELS OUTPUT ....................................................................................................... 133 

7.22.1 Post process ..................................................................................................... 133 

7.22.2 Output initialisation ......................................................................................... 133 

7.22.3 Add fees and intervals working ....................................................................... 133 

7.22.4 Draw ................................................................................................................ 134 

7.22.5 Run title ........................................................................................................... 134 

7.22.6 Calculate end ................................................................................................... 134 

7.22.7 Post process procedures ................................................................................. 134 

7.22.8 Set and get vessel output ................................................................................ 135 

7.23 DELAYS OUTPUT ......................................................................................................... 135 

7.23.1 Draw ................................................................................................................ 135 

7.23.2 Run title ........................................................................................................... 136 

7.23.3 Calculate end ................................................................................................... 136 

7.23.4 Post process procedures ................................................................................. 136 

7.23.5 Percent formatting .......................................................................................... 137 

7.23.6 Set and get delays output ................................................................................ 137 



 

Page 9 of 169 

 

7.24 MAINTENANCE MANAGER OUTPUT .......................................................................... 137 

7.24.1 Start ................................................................................................................. 137 

7.24.2 Draw ................................................................................................................ 138 

7.24.3 Draw title ......................................................................................................... 138 

7.24.4 Print titles ........................................................................................................ 139 

7.24.5 Print data ......................................................................................................... 139 

7.25 FAILURES OUTPUT ..................................................................................................... 139 

7.25.1 Start ................................................................................................................. 139 

7.25.2 Set occurrence and costs ................................................................................. 140 

7.25.3 Next_interval ................................................................................................... 141 

7.25.4 Draw ................................................................................................................ 142 

7.25.5 Draw title ......................................................................................................... 142 

7.25.6 Print titles ........................................................................................................ 142 

7.25.7 Calculate end ................................................................................................... 143 

7.25.8 Print data ......................................................................................................... 143 

7.25.9 Set and get procedures.................................................................................... 143 

7.25.10 Sort failure table .............................................................................................. 143 

7.26 MAINTENANCE OUTPUT ............................................................................................ 144 

7.26.1 Start ................................................................................................................. 144 

7.26.2 Set costs ........................................................................................................... 145 

7.26.3 Next_interval ................................................................................................... 145 

7.26.4 Draw ................................................................................................................ 146 

7.26.5 Draw title ......................................................................................................... 146 

7.26.6 Print titles ........................................................................................................ 147 

7.26.7 Calculate end ................................................................................................... 147 

7.26.8 Print data ......................................................................................................... 147 

7.26.9 Set and get procedures.................................................................................... 147 

7.27 GRAPH CREATOR ........................................................................................................ 148 

7.27.1 Master ............................................................................................................. 148 

7.27.2 Insert chart ...................................................................................................... 149 

7.27.3 Create parameter graphs ................................................................................ 149 

7.27.4 Create cumulative profit graph ....................................................................... 151 

7.27.5 Create monetary histogram ............................................................................ 151 

7.27.6 Create summary graphs .................................................................................. 152 



 

Page 10 of 169 

 

7.27.7 Add this series ................................................................................................. 153 

7.27.8 Format scatter diagram ................................................................................... 153 

7.27.9 Format histogram ............................................................................................ 154 

7.27.10 Get cause column ............................................................................................ 154 

7.27.11 String parameter.............................................................................................. 154 

8 DOCUMENT INDEX ................................................................................................. 155 

9 REFERENCES ........................................................................................................... 166 

10 APPENDICES........................................................................................................... 167 

10.1 LIST OF FIGURES ......................................................................................................... 167 

10.2 LIST OF TABLES ........................................................................................................... 167 

10.3 APPENDIX A ................................................................................................................ 168 

 

 

 

 

 

 

 

 

 



 

Page 11 of 169 

 

1 INTRODUCTION 

The seas around Scotland are some of the most powerful and inhospitable on the planet, which 

makes them ideal for deploying wave energy converters (WECs) – devices that use wave action to 

generate electricity. Wave Energy Scotland (WES) was set up by the Scottish Government in 2014 

to fund and support innovative solutions to the technical challenges of harnessing energy from the 

waves. One aspect making the commercialisation of wave energy devices difficult is the uncertainty 

surrounding lifetime costs of wave energy arrays, particularly during the operations and 

maintenance (O&M) phase. Having a reliable means of estimating these costs in as realistic a way 

as possible is therefore hugely important in the development of the wave energy sector. 

Wave Energy Scotland has released an O&M simulation tool to analyse the lifetime logistics of a 

wave energy array. The tool originates from a research project sponsored by WES through the 

Industrial Doctoral Centre for Offshore Renewable Energy (www.idcore.ac.uk). The tool was initially 

developed in collaboration with Pelamis Wave Power, one of the world’s leading wave energy 

technology companies at the time, with an emphasis on commercial-scale WECs rated up to 1MW. 

The tool’s methodology was then applied to the much smaller off-grid WECs being designed by 

Albatern, another Scottish wave energy developer. These collaborations have enabled WES to 

produce an O&M simulation tool which can be applied to an array of any type of wave energy 

converter. 

An O&M simulation model is an extremely useful tool for three primary reasons: 

1. At early stages of development, an O&M model can help identify critical components 

which would have the biggest impact on array performance, thus providing feedback into 

the device design 

2. The tool provides estimates of array availability, revenue and operational expenditure 

which helps to refine Levelised Cost of Energy (LCOE) calculations 

3. As device development moves towards real sea testing, the tool can assist in planning 

aspects of the O&M strategy for future arrays 

The tool has been created using Microsoft Excel and the associated VBA programming language. It 

uses the Monte Carlo method to simulate the occurrence of faults on each WEC in an array by 

utilising failure rate data. All the components of the device are represented by fault categories, 

assigned following a Failure Modes and Effects Analysis (FMEA) of the device. The user can choose 

whether certain faults can be repaired whilst the WEC is offshore, or if all faults require the device 

to be towed to the safety of a sheltered quayside or onshore O&M base for repair. This ‘reactive’ 

maintenance modelling is coupled with the option to include modelling of ‘proactive’ routine 

servicing of WECs. Maintenance parameters, such as repair times and parts costs, are defined by 

the user, as are other aspects of the O&M strategy, such as weather limits for marine operations. 

The model utilises a time series of weather conditions in order to assess windows of accessibility 

and calculate revenue generated by the array at each time step. The model simulates the array 

lifetime as realistically as possible by enforcing logistical constraints, including technician 

availability and quayside access. A full breakdown (per device and per year) of outputs including 

availability, revenue and operational expenditure is presented, as well as a table attributing costs 

to each fault category. 

This report details the functionality of the O&M simulation tool and is intended to be a reference 

guide for model validation, as well as future modifications and enhancements. 



 

Page 12 of 169 

 

2 TERMINOLOGY 

Acronyms, abbreviations and potentially unfamiliar words are listed here for user reference. 

CBA    - Cost-Benefit Analysis 

FMEA    - Failure Modes and Effects Analysis 

Hs     - Significant wave height 

IDCORE   - Industrial Doctoral Centre for Offshore Renewable Energy 

LCOE    - Levelised Cost of Energy 

Multicat   - a multipurpose vessel used for marine operations 

NaN    - Not a Number 

O&M    - Operations and Maintenance 

Offsite   - not at the wave energy array site, i.e. onshore or at quayside 

Onsite   - at the wave energy array, i.e. offshore 

OOP    - Object-Oriented Programming 

OPEX    - Operational Expenditure 

PTO    - Power Take-Off 

Te     - Wave energy period 

Tp     - Wave peak period 

Transit (in)  - when travelling to and from the wave energy site, with or without towing a WEC 

U     - Wind speed 

U10    - Wind speed at 10 metres above ground level 

VBA    - Visual Basic for Applications (Microsoft Excel’s programming language) 

WEC    - Wave Energy Converter 

WES    - Wave Energy Scotland 

Weather window - a period where weather conditions remain accessible for marine operations 

 

 



 

Page 13 of 169 

 

2.1 VBA TERMINOLOGY 

Argument  - a variable sent to a procedure for use 

Call    - a procedure is ‘called’ by another one in order for it to undertake its action 

Cells    - an in-built VBA function used to refer to an Excel cell 

Class module - secondary object in VBA programming 

Const    - a term used to assign a variable a certain value at the beginning of an object or 

procedure 

Data type  - format in which data is stored in a variable 

Dim    - a term used to define a variable as a particular data type 

Function   - a procedure that performs an action and can return values 

Interval   - one time step of the model 

Module   - primary object in VBA programming 

Procedure  - a set of programming instructions to perform some action 

Subroutine  - a procedure that performs an action 

Variable   - a temporary holder of information. Data can be in numerous types, such as String 

(words), Integers (whole number between -32,768 and 32,767), Long (whole 

number up to 2 billion) or Double (a decimal number) 

Worksheet  - VBA term for an Excel spreadsheet 



 

Page 14 of 169 

 

3 MODEL STRUCTURE 

The O&M model operates by taking information stored in Excel spreadsheets and processing the 

data in Visual Basic for Applications (VBA). The outputs are then printed to Excel spreadsheets. 

The model interface consists of a primary ‘Inputs’ spreadsheet with tables detailing potential 

failures and scheduled maintenance tasks, as well as other spreadsheets for aspects such as 

workforce arrangements and vessels available for the array. These parameters allow the array to 

be defined and are used to constrain operations, thereby dictating the O&M strategy. 

The processing methodology of the model occurs in VBA and is of an Object-Oriented Programming 

(OOP) nature. This allows the model to undertake a series of processes at every time step for each 

year of the array lifetime. Failure rate data is used to simulate the occurrence of faults on each 

device in the array, and marine operations are carried out to allow repairs to take place. Output 

data is calculated throughout the model processing and the information is printed in a clear way on 

spreadsheets. A flowchart of the model structure can be seen in Figure 3.1. 

INPUTS (MS Excel)

Failure rates
Scheduled 

maintenance
Repair 

parameters
Vessels Workforce

Operational 
limits

Weather

Power matrix
Number of 

WECs
Strategy

PROCESSING (VBA)

Initialise VBA 
objects

At every time 
step

Simulate 
failures

Simulate marine 
operations

Simulate 
maintenance

Calculate 
outputs

OUTPUTS (MS Excel)

Availability Revenue Lost revenue Labour costs Parts costs Vessel costs Total OPEX

High impact failures 
identified

 

Figure 3.1. O&M model structure (high-level) (Gray 2017) 



 

Page 15 of 169 

 

4 MODEL INPUTS 

There are eight spreadsheets that require input from the user. The information contained within 

these sheets is used by the VBA processing to simulate the lifetime logistics of the defined wave 

energy array. The primary input spreadsheet is named ‘Inputs’. The seven other user-controlled 

sheets are located to the left of ‘Inputs’. After the model has finished a simulation, the results are 

printed to spreadsheets placed to the right of ‘Inputs’. It is important to note that the VBA code 

reads directly from the input spreadsheets. Therefore, if the value or positioning of input data is 

modified, then the code may need to be changed accordingly. The eight input sheets are: 

 Inputs 

 Vessels 

 Labour 

 Ops Limits 

 Power 

 Daylight 

 Weather 

 Hindcast 

This section addresses each spreadsheet in turn and details the information contained within. 

4.1 INPUTS SHEET 

The ‘Inputs’ spreadsheet contains the primary data required by the O&M model. This includes 

defining the number of WECs in the array, the project lifetime and the installation details of a WEC. 

These universal inputs are accompanied by tables detailing the potential faults and scheduled 

maintenance tasks for WECs or for the entire array. The components and subsystems of the WEC 

and the array are represented by fault categories. Each category is assigned a failure rate, power 

loss, vessel required and other parameters defining the repair action. Such parameters are also 

assigned to the scheduled maintenance events. The spreadsheet also contains Macro buttons for 

running the processes of the O&M model.  

4.1.1 Universal Inputs 

The universal inputs are contained within a single column in the ‘Inputs’ spreadsheet. These are: 

 Number of WECs in the array 

 Number of failure types 

 Number of scheduled maintenance categories 

 Array lifetime 

 Operational limits for WEC installation 

 Vessel required for WEC installation 

 Time required onsite for WEC installation 

 Number of technicians required for WEC installation 

 Number of WECs allowed at O&M base 

 Number of WECs allowed at O&M base solely for maintenance 

 Number of spare PTO units 

 Number of spare instrumentation boxes 

 Delivery time for spares 



 

Page 16 of 169 

 

 Cost-benefit analysis for WEC retrieval 

 Cost-benefit analysis for onsite WEC repair 

 Days allowance until maintenance for cost-benefit analysis 

 Marine operations allowed at night 

 Location of array 

 Use current weather dataset 

 Choose a specific weather dataset 

 Format of monetary outputs 

Many of these inputs need to be added manually by the user. This includes the number of WECs, 

the array lifetime and the number of scheduled maintenance tasks. The number of failures types is 

updated automatically as the maximum value of the IDs located in column A. This assumes that 

there will always be more fault categories than maintenance categories. 

The model starts by assuming all WECs have already been installed at the offshore site. However, 

one possible maintenance strategy is removing faulty WECs (or ones that require routine 

maintenance) for repair and inspection at the safety of a sheltered harbour or O&M base. As a 

result, WEC installation details are required by the user in the universal inputs. The operational 

limits for WEC installation are given as ‘types’ corresponding to those found in the ‘Ops Limit’ sheet 

(section 4.4, page 23). A type can be solely defined by significant wave height, but can also include 

a wind speed constraint or it can vary depending on wave period. An error message will be 

displayed if an invalid entry is attempted. The vessel required for WEC installation must be selected 

from a dropdown list, corresponding to the vessels listed in the ‘Vessels’ spreadsheet (section 4.2, 

page 22). The number of hours to undertake a WEC installation does not include vessel transit, as it 

is the time from when the WEC is towed to the site, until it is ready to start operating. This value 

can be given as a decimal number to represent fractions of an hour if required (i.e. enter 1.5 if the 

installation takes one hour and thirty minutes). The number of technicians required for a WEC 

installation operation must be given as an integer. 

The amount of onshore or quayside space is taken into account using the two cells defining the 

number of WECs allowed at the O&M base. The ‘no. WECs allowed at base’ value places a 

constraint of the number of WECs that can be moored at the quayside (or placed onshore, 

depending on O&M base layout) at any given time. The ‘no. WECs allowed at base for 

maintenance’ value can be used to define the amount of space that can be used solely for 

scheduled maintenance activities. This enables analysis of the strategy of keeping one or more 

spaces available for emergency WEC repair during periods of high maintenance activity. 

The model allows failures to be specified as requiring onsite repair only. This may be relevant for 

WECs that have a modular design, enabling certain parts to be replaced quickly and safely whilst 

the device is still offshore. The two examples of replacement parts given in this model are power 

take-off (PTO) units and instrumentation boxes. Two cells in the universal inputs allow the user to 

define the number of each of these parts stored at the O&M base. The ‘delivery time’ value is 

provided by the user, and is the number of days between using one of the spare parts from the 

O&M base and a new one being delivered for future use. 

Two options are available to the user for implementing a cost-benefit analysis (CBA) to the decision 

making of the model functionality. If ‘retrieval cost-benefit analysis’ is set to ‘Yes’ then the costs of 

repairing a faulty WEC that requires retrieval (i.e. being taken to the O&M base for repair) are 



 

Page 17 of 169 

 

weighed up against the income generated by the faulty device before a decision is made on 

undertaking the marine operation. If the value is set to ‘No’ then a faulty WEC requiring retrieval is 

repaired as soon as possible. Likewise, if ‘onsite repairs cost-benefit analysis’ is set to ‘Yes’ then the 

CBA is used for faulty WECs that can be repaired offshore. Otherwise, such repairs are undertaken 

as soon as possible. The ‘CBA days allowance for maintenance’ value is used by the cost-benefit 

analysis (if either of the CBA options has been set to ‘Yes’). At any given time step, if any scheduled 

maintenance on the WEC will be due within the specified number of days, then the marine 

operation is delayed until then. 

The user can specify if marine operations can take place at night or if they are constrained to 

daylight hours. If the ‘night operations?’ cell is set to ‘No’ then the daylight hours matrix found in 

the ‘Daylight’ spreadsheet (section 4.6, page 25) is used to defined weather windows, in addition to 

the operational limits. The daylight hours matrix must correspond to the site entered in the ‘Array 

location’ cell. This entry is also used to identify which weather dataset is to be used for the model 

simulations. 

The O&M model allows the user to choose which dataset of weather conditions they want to use 

for simulations. The ‘use current weather?’ cell also contains the name of the dataset currently 

located in the ‘Weather’ spreadsheet. If the value is set to ‘Yes’ then this dataset is used for the 

simulations. If the value is set to ‘No’ then the Excel workbook containing the weather datasets 

corresponding to the defined site and array lifetime needs to be opened. More information on the 

creation of these dataset stores can be found in the ‘Weather Simulation Report’ (WES, 2017a). If 

‘choose specific dataset?’ is set to ‘Yes’ then a dropdown list appears with the names of all the 

datasets within the store. If it is set to ‘No’ then a dataset is chosen randomly from the store. 

The user can select whether to show monetary outputs in pounds, thousands of pounds or millions 

of pounds using the ‘output format’ entry. 

4.1.2 Fault categories 

The dominant aspect of the ‘Inputs’ spreadsheet is the table of fault categories. These categories 

represent all the components and subsystems within the WEC. In addition, the categories can 

involve array components, such as subsea central electrical connections, if required by the user. 

The categories hold a large amount of descriptive and numerical information, most of which is used 

by the model’s VBA code. The likelihood, severity and consequence of all component failures 

should be considered. This leads to the classification of failures as either ‘major, ‘intermediate’ or 

‘minor’ faults. They can then be separated further into the type of engineering involved, such as 

‘hydraulic’ or ‘structural’. This method of classification in the O&M model means that the best way 

of collating the input data is through a Failure Modes and Effects Analysis (FMEA). This is a well 

understood procedure, with many guidance documents available in the public domain (e.g. DNV, 

2012). An explanation of how to use information from an FMEA to obtain inputs for the O&M 

model can be seen in Appendix A (page 168). By grouping components into fault categories, the 

O&M model can run simulations much faster than if it had to operate for every component in the 

WEC and array. This also allows changes to the WEC design to be analysed and compared in a rapid 

and efficient manner. The drawback of this method is that there is variability in the inputs to each 

category because the values are averages of all the components contained within that category. 

Therefore, a trade-off between the level of variability in the inputs and the speed and adaptability 



 

Page 18 of 169 

 

of the model needs to be made. The names and input values of fault categories will vary for 

different types of WEC. However, the following fifteen categories provide guidance: 

 Major mooring 

 Major structure 

 Major hydraulic 

 Major electrical 

 Major communications 

 Intermediate mooring 

 Intermediate structure 

 Intermediate hydraulic 

 Intermediate electrical 

 Intermediate communications 

 Minor mooring 

 Minor structure 

 Minor hydraulic 

 Minor electrical 

 Minor communications 

The cell containing the ID of each fault category is formatted to be a colour corresponding to its 

classification. The VBA code reads this colour in order to determine the severity of the failure. For 

each fault category, the table on the ‘Inputs’ spreadsheet offers a series of descriptive cells which 

are not incorporated into the VBA code. Instead, these are used to outline the components and 

failure modes contained within each category, and provide justification for the input values given. 

Descriptive entries for each fault category could include: 

 Example of components or failure modes 

 Consequences of failure 

 Knock on effect of failure 

 Effect on power capture 

 Remote indication 

 External visual indication 

 Basis of probability 

The ‘knock on effect’ entry has no impact on the model at present. However, it could become 

possible to modify the failure rates if certain faults has significant knock on effects on the likelihood 

of other faults, if such information was available. 

The ‘effect on power capture’ entry provides a description for the value provided for ‘power loss’. 

This numerical value indicates the power loss incurred on the entire array due to the occurrence of 

the given fault category. It needs to be a value between 0 (indicating no power loss) and 1 

(shutdown of the entire array). Therefore, if a fault category refers to WEC components, then the 

Excel formula for that cell should include the number of WECs in the farm: 

                 
              

                       
 

The ‘relevance’ entry in the table of fault categories has a dropdown list and indicates whether 

those components relate to the WEC or the array. This is used by the model to undertake the 

Monte Carlo simulation of failures, whereby array failures are assessed only once at each time 



 

Page 19 of 169 

 

step, in contrast to WEC failures which are assessed for the number of WECs in the array at each 

time step. The ‘relevance’ of a fault category also has major implications on the functionality of the 

simulated logistics over the course of the array lifetime. The other inputs of each fault category 

listed below must be applicable to the ‘relevance’: 

 Probability of failure (per year) 

 Action required 

 Vessel required 

 Time required offshore (hours) 

 Ops limits type 

 Time required onshore (days) 

 Parts cost (£) 

 Other costs (£) 

 Technicians required 

The likelihood aspect of the FMEA process means that failure rates of each component in the WEC 

and array can either be found using reliability handbooks (e.g. OREDA, 2015) or accelerated testing, 

or can be assumed in the initial instance. In grouping components into fault categories, these 

individual failure rates can be averaged to produce the annual probabilities of failure entered into 

the O&M model. The VBA code uses these probabilities to run the Monte Carlo analysis which 

simulates the occurrence of faults at each time step. 

If any fault categories have ‘relevance’ set to ‘array’, then it may be likely that the failure rate is 

dependent on the number of WECs in the array. For example, the number of mooring lines 

required may not have a linear relationship with the number of WECs. If the model is tailored in 

this manner, then it may be useful to add a new input spreadsheet that sends information to the 

‘probability of failure’ entry of the appropriate fault category. 

The ‘action required’ must be selected from a dropdown list with the options: ‘retrieve WEC’, 

‘replace PTO unit’, ‘replace instrumentation box’ and ‘moorings/subsea work’. These refer to the 

action that is required when that fault category has suffered a failure and is set to be repaired. The 

‘retrieve WEC’ option means that the repair can only be carried out if the WEC is removed from site 

and taken to the safety of a sheltered quayside or onshore O&M base. Repairs can be undertaken 

at the offshore site if either of the two ‘replace’ options are selected, or if ‘moorings/subsea work’ 

is required. The ‘action required’ must be compatible with the ‘relevance’ (i.e. WEC or array) of the 

fault category. 

The ‘vessel required’ for the action must be selected from a dropdown list corresponding to the 

available vessels listed in the ‘Vessels’ spreadsheet. 

The ‘time required offshore’ must be given in hours, and can be a decimal number (i.e. 0.5 for half 

an hour). If the selected action is ‘retrieve WEC’ then this entry refers to the time it takes to 

disconnect the WEC once the vessel has arrived at site. In other words, it does not include the 

transit time neither with nor without towing the device. Transit time is also not included if any of 

the other actions are required, however, it is likely these will take longer than WEC disconnection.  

As with the installation operational limits described in the universal inputs section (section 4.1.1), 

the ‘ops limits type’ entry in the fault categories refers to a type detailed in the ‘Ops Limit’s 

spreadsheet. 



 

Page 20 of 169 

 

For any action apart from ‘retrieve WEC’, there will be no ‘time required onshore’. The entry 

should therefore read ‘N/A’. However, for ‘retrieve WEC’ actions, this entry refers to the number of 

days required to repair the WEC at the sheltered quayside or onshore O&M base. This time must 

take working hours of technicians into account. 

The cost of parts is defined following the FMEA process as described in Appendix A (page 168). The 

‘parts cost’ for each fault category is an average of the cost of the components within that 

category. ‘Other costs’ can incorporate aspects such as the use of divers or extra equipment (e.g. a 

drydock), as well as unforeseen costs. Both these entries need to be given with the value in pounds 

sterling. 

If a fault category requires the action ‘retrieve WEC’ then the ‘technicians required’ entry refers to 

the number of personnel required for the repair task at the O&M base for the duration of the ‘time 

required onshore’. The number of technicians required for the actual retrieval operation is 

obtained from the universal inputs ‘install technicians required’ entry. For the actions ‘replace PTO 

unit’, ‘replace instrumentation box’ and ‘moorings/subsea work’, the ‘technicians required’ entry 

refers to the number of technicians needed on board the vessel in order to complete the task. This 

does not account for external personnel such as divers (these are included in ‘other costs’). The 

time required to complete tasks needs to consider technicians’ working hours. 

4.1.3 Scheduled maintenance 

The table of scheduled maintenance tasks in located directly below the table of fault categories. At 

present, the names of the tasks can be selected from a dropdown list containing three options; 

‘routine service’, ‘major components refit’ and ‘moorings inspection’. The ‘relevance’ entry must 

either be defined as ‘WEC’ or ‘Array’, as with the fault categories. The relevance must correspond 

to the type of maintenance: 

 Routine service   - WEC 

 Major components refit - WEC 

 Moorings inspection  - Array 

It should be noted that the cost-benefit analysis aspect of the O&M model will not operate 

correctly if there are no WEC-related scheduled maintenance tasks defined. The CBA uses these 

events to calculate the income generated by a WEC up to the point when it is next scheduled for 

maintenance. This is fundamental to the functionality of the cost-benefit analysis. However, if no 

WEC-related maintenance tasks are defined, then the O&M model will still operate correctly so 

long as no CBA option is selected. 

More scheduled maintenance tasks can be added to the model, but the VBA code must be changed 

accordingly (see section 4.1.3). The ‘tasks’ entry allows the user to note down examples of the jobs 

to be undertaken in each maintenance event. This information is not used by the VBA code. All the 

other entries in the table of scheduled maintenance are used by the model: 

 Maintenance interval – ‘carry out every…(years)’ 

 Staggered 

 Time of year 

 Action required 

 Vessel required 

 Time required offshore 



 

Page 21 of 169 

 

 Operational limits type 

 Time required onshore 

 Parts cost 

 Other costs 

 Inspection costs 

 Technicians required 

The interval between maintenance events is governed by the ‘carry out every…’ entry. The value 

must be given in years as an integer. If the value is set to 1, then that task is carried out every year 

(and for every WEC if the task’s ‘relevance’ is ‘WEC’). If WEC-based maintenance tasks are not to be 

carried every year, then the entry ‘staggered?’ is used. For example, if ‘routine service’ is to be 

undertaken every two years, and staggered maintenance is chosen, then half the WECs in the array 

will be serviced in year 1, then year 3, then year 5 etc., whilst the other half will be serviced in even 

numbered years. The staggered maintenance entry is ignored if the interval is significantly large. 

For example, the ‘major components refit’ task might only occur halfway through the array 

lifetime. Therefore, the model ignores the ‘staggered’ entry to ensure than all WECs undergo this 

task at the half-life point. 

The ‘time of year’ must be the name of a season selected from a dropdown list. The maintenance 

task will be set at the start of the specified season in the correct years. These start dates 

correspond to meteorological seasons: 

 Spring - 1st March 

 Summer - 1st June 

 Autumn - 1st September 

 Winter - 1st December 

The remaining input entries in the table of scheduled maintenance tasks operate in a similar 

manner to the fault categories.  

The ‘action required’ is selected from a dropdown list with the options ‘retrieve WEC’ and 

‘moorings work’. Replacement of parts whilst the WEC is at site is not considered in the model at 

present, but it is possible to build this functionality in if required.  

The ‘vessel required’ must be selected from a dropdown list which corresponds to the available 

vessels listed in the ‘Vessels’ spreadsheet.  

For WEC-based maintenance, the ‘time required offshore’ is the time for WEC disconnection and 

preparation for towing back to the O&M base. For array-based tasks, it is the time to undertake the 

maintenance actions once arrived at site. The ‘time required offshore’ does not include transit 

times. It can be given as either an integer, representing whole hours, or as a decimal number (e.g. 

1.5 is one and a half hours).  

The ‘ops limits type’ entry must refer to one of the types listed in the ‘Ops Limits’ spreadsheet. 

Array-based maintenance events will have no ‘time required onshore’ so this value should be set to 

‘N/A’. WEC-based events, however, will require a number of days at the O&M base. The entry must 

account for the working hours of technicians and other logistical aspects. 



 

Page 22 of 169 

 

The ‘parts cost’ entry refers to the cost of any replacement parts required during the maintenance 

task. ‘Other costs’ provides a budget for unforeseen costs incurred during the maintenance event. 

It can also include aspects such as extra food and fuel required for longer vessel operations. 

‘Inspection costs’ were not included in the table of fault categories. These costs refer to additional, 

foreseen expenses for the maintenance task. This could include, for example, the user of external 

personnel or divers for ‘moorings work’. All three of these cost-based entries must be given in 

pounds sterling. 

The number of ‘technicians required’ is the number of personnel needed to undertake the 

maintenance task. For WEC-based maintenance, this is the number of technicians needed for the 

full ‘time required onshore’. The number of technicians needed for the retrieval operation is 

governed by the ‘install technicians required’ entry in the table of universal inputs. For array-based 

maintenance, the ’technicians required’ entry refers only to personnel from the O&M base 

required for the operation. Expenses for any additional personnel required, such as divers or third-

party contractors, should be included in ‘other costs’ and ‘inspection costs’. 

4.2 VESSELS SHEET 

The ‘Vessels’ spreadsheet contains all the information related to the available vessels for use in the 

wave energy array. For each vessel, the following information is listed: 

 Name 

 ID 

 Average speed (in knots) 

 Time to site, free (in hours) 

 Time to site, towing (in hours) 

 Fuel cost per hour (in £) 

 Personnel capacity 

 Daily hire fees (in £) 

 Vessel availability (0 to 1) 

Above the table containing this information, however, there are a number of input values used in 

the ‘Vessels’ spreadsheet and in the VBA code. The ‘number of vessels’ is updated automatically 

using the ‘vessel ID’ values in the main table. The ‘distance to site’ value needs to be entered by 

the user in kilometres. It is used to calculate the transit times to and from site. The ‘preparation 

time’ is also used to calculate transit times. It can account for any tasks that are required before 

undertaking any marine operation (e.g. safety checks) and must be given in hours (integers or 

decimal numbers are valid). For user reference, there is value of 1.852 located in a cell which is 

used to convert vessel speed from knots to kilometres per hour. The final entry outside the main 

vessels table is the assumed speed of a vessel whilst towing a WEC, provided in knots. 

The names of the vessels are used by the ‘Inputs’ spreadsheet to create the dropdown lists which 

allow the user to select the ‘vessel required’. The ID of the vessels should be listed in ascending 

order, starting at 1, with no duplicates. The ‘average speed’ must be given in knots and represents 

the average speed at which the vessel will travel to the offshore site from the O&M base without 

towing a WEC. 



 

Page 23 of 169 

 

Using the information provided, the ‘time to site, free’ (i.e. without towing a WEC) and ‘time to 

site, towing’ entries are calculated and rounded up to the nearest 15 minutes. If the vessel cannot 

tow a WEC then the ‘time to site, towing’ entry should be changed to ‘N/A’. 

The ‘fuel cost per hour’ is an estimate of the amount of fuel used by a vessel and must be provided 

in pounds sterling. Estimates should be obtained using expected fuel consumption of the vessel as 

well as the most appropriate fuel cost in the array location. Personnel capacity refers to the 

number of technicians that can be on board the vessel for a marine operation. This does not 

include the addition of external personnel, such as divers, because it is assumed that the selected 

vessel is appropriate for the task.  

The ‘daily hire fees’ entry allows the user to select a day rental rate (in pounds sterling) imposed by 

the vessel operator. This could include vessel crew costs if the ‘install technicians required’ (defined 

in the universal inputs section of the ‘Inputs’ spreadsheet) are not responsible for operating the 

boat. It should be noted that the ‘daily hire fees’ are incurred for any amount of a full 24 hour day. 

In other words, even if the vessel is only used for 2 hours of the day, the full day rate is still 

charged. If the vessel is owned by the array operator then ‘daily hire fees’ can be set to zero. In this 

case, the ‘vessel availability’ should also be set 1, meaning that the vessel is always available for 

marine operations on this array. Unless a long term lease agreement is reached, it is likely that a 

vessel on hire will be available for other projects in addition to the wave energy array. Therefore, 

‘vessel availability’ can be set to a value between 0 and 1 to account for periods when a vessel may 

be unavailable when required. 

4.3 LABOUR SHEET 

The ‘Labour’ spreadsheet contains information about the workforce arrangements and costs at the 

O&M base. It is assumed that all personnel listed here are capable of undertaking all repairs and 

maintenance tasks specified in the ‘Inputs’ spreadsheet. A ‘site manager’ can act as a ‘technician’ in 

undertaking these tasks. The user can change the number of ‘site manager’s and ‘technician’s at 

the O&M base. The total number of workforce personnel updates automatically and is read by the 

VBA code. The formula in the ‘annual salary’ entries for each type of personnel must be modified to 

represent the annual salaries earned by each member of the team. The total annual salary earned 

by the members of the O&M team is multiplied by the assumed ‘overheads multiplier’ to give the 

annual cost of workforce for the array.  

The user must select whether to ‘enable short term contractors’ using a dropdown list. Contractors 

are employed as extra technicians and it is assumed that the ‘site manager’ designates them jobs 

to which they are suited. If ‘enable short term contractors’ is set to ‘yes’ then additional personnel 

is brought in when the repairs and maintenance tasks would otherwise be delayed due to a lack of 

available technicians. The ‘contractor day rate’ must be given in pounds sterling and represents the 

fee paid for a full 24 hour period. For example, if a contractor is only needed for 6 hours, then only 

a quarter of the day rate is paid. This aspect needs to be taken into account when specifying the 

‘contractor day rate’. The ‘overheads multiplier’ is not used for adjusting the ‘contractor day rate’. 

4.4 OPERATIONAL LIMITS SHEET 

The ‘Ops Limits’ spreadsheet contains the information defining the different types of operational 

limits used in the model. The user must define the ‘number of ops limits types’ and subsequently 



 

Page 24 of 169 

 

complete the table of parameters for each of the chosen types. There is currently space for four 

types of operational limits, but more can be added if required by following the same format. Each 

type has an initial header with its type ID. The following row contains the number of parameters 

used to define that type of operational limits. The user must select this to be an integer between 0 

and 3 using a dropdown list. Below the ‘parameters considered’ entry are five rows used for 

entering parameter values. The possible entries automatically update depending on which value of 

‘parameter considered’ have been selected, as shown in Table 4.1. 

Table 4.1. Headers for each parameter considered in the 'Ops Limits' input spreadsheet 

Parameters considered 0 1 2 3 

Row 3 N/A 
Significant Wave 

Height (m) 

Significant Wave 

Height (m) 
Wind speed (kts) 

Row 4 N/A  Wind speed (kts) Lower maximum Hs (m) 

Row 5 N/A   
Upper maximum Hs 

(m) 

Row 6 N/A   Lower period point (s) 

Row 7 N/A   Upper period point (s) 

In Table 4.1, the row ID refers to the position of the header, with row 1 containing the ‘Type’ ID. 

Once the user has chosen the number of parameters in each type, they must then select 

appropriate values for each of the entries. Entries for significant wave height (Hs) and wind speed 

(U) can be entered as either integers or decimal values. If three parameters are considered then 

the Hs limit depends on what the wave period is. Note: wave period can be represented in multiple 

ways, most notable wave energy period (Te) and wave peak period (Tp). The notation of wave peak 

period must be consistent throughout the model and defined in the ‘Power’ (section 4.5) and 

‘Weather’ (section 4.7) spreadsheets. Alongside each ‘type’ table there is a graph providing visual 

representation of the information. These graphs are not used by the VBA code. An example can be 

seen in Figure 4.1. The spreadsheet also contains some notes to guide the user in completing the 

input information. 

 

Figure 4.1. Example of an operational limits graph in the 'Ops Limit' spreadsheet 

The values on the ‘Inputs’ spreadsheet use the ‘Type’ IDs to define the weather limitations for 

marine operations. The model’s VBA code uses the input parameters from the ‘Ops Limits’ 

spreadsheet to determine if a weather window is open (i.e. accessible) or closed (i.e. inaccessible). 

When multiple repairs or maintenance tasks are to be undertaken, the model must choose the 



 

Page 25 of 169 

 

operational limits that are the most restrictive (i.e. the calmest sea and wind conditions). 

Therefore, it is vital that the operational limit types are listed in order of severity, with the most 

restrictive limits first. If the severity is not clear (e.g. between a type with 2 parameters and one 

with 3 parameters), then the hindcast dataset of weather conditions needs to be analysed to find 

the percentage of ‘open’ weather windows for each type. 

4.5 POWER SHEET 

The ‘Power’ spreadsheet is used to store a power matrix of the WEC (or group of WECs) under 

analysis in the O&M model. The types of WECs that can be analysed by this model vary. Whilst 

many will be stand-alone devices deployed alongside others in an array, some possible designs 

could see WECs joined together directly to increase power output per device. Therefore, there is an 

entry above the power matrix to allow the user to define the ‘number of WECs per power matrix’. 

The power values shown in the matrix must be in kilowatts (kW). Values of significant wave height 

are entered in column A and must be in metres. Values of wave period (this can either be wave 

energy period, Te, or wave peak period, Tp, depending on the user specification) are listed along 

row 5 and must be in seconds. If the locations of these values are modified then the VBA code 

needs to be changed accordingly (see section 7.6). The resolutions of the steps in Hs and wave 

period need to match the resolutions provided in the ‘Weather’ spreadsheet. 

The tariff used as the sale price of electricity must be defined by the user in pence per kilowatt-

hour (p/kWh). 

4.6 DAYLIGHT SHEET 

The ‘Daylight’ spreadsheet contains a matrix (or matrices) showing the amount of hours of daylight 

in each month for a given location. The resolutions of the hour values must match the time step 

resolution of the O&M model (defined by the resolution of the weather input data). In the matrix, 

hours of daylight must read ‘Day’, with hours of darkness reading ‘Night’. These words are used by 

the VBA code in defining weather windows if the ‘night operations’ entry in the ‘Inputs’ 

spreadsheet has seen set to ‘no’.  More locations can be added, with information about daylight 

hours freely available on the internet. The VBA code (primarily section 7.6) must be modified if 

other array locations are to be analysed. 

4.7 WEATHER SHEET 

The ‘Weather’ spreadsheet contains the weather data averaged for each time step and placed into 

‘bins’. The resolution of the bins for significant wave height and wave period must match the 

values seen in the power matrix (section 4.5). The wave period can be given as either wave energy 

period (Te) or wave peak period (Tp) so long as it matches the power matrix and operational limits. 

The wind speed values are also placed into bins as a consequence of the Markov Chain method of 

simulating the time series. A full report explaining the methodology and validation of this weather 

simulation model is available (see the ‘Weather Simulation Report’, WES, 2017a). The time step is 

identified by the corresponding year, month, day and hour. The information is printed as indicated 

in Table 4.2. If this layout changes then the VBA code needs to be modified (section 7.6). 

 



 

Page 26 of 169 

 

Table 4.2. Layout of the 'Weather' spreadsheet 

Column A B C D E F G 

Parameter Year Month Day Hour Hs (m) Period (s) U (kts) 

The VBA code prints out the average power, energy and revenue (array at 100% capacity) at each 

time step alongside the weather dataset. This allows the user to check that the power matrix is 

being used correctly. This calculated information is cleared at the beginning of a new simulation. 

The ‘Weather’ spreadsheet will update automatically depending on the user’s selections in the 

relevant entries on the ‘Inputs’ spreadsheet. If a new dataset is required then the dataset store (an 

Excel workbook with a different dataset on each spreadsheet) corresponding to the specified array 

lifetime must also be open. In this case, the VBA code will clear the information contained in the 

present ‘Weather’ spreadsheet and will replace it with the new dataset. If the user opts to use the 

weather data already placed in the spreadsheet but the array lifetime does not match, then an 

error message will appear explaining the problem. 

The user does not need to add any information to the ‘Weather’ spreadsheet manually. However, if 

a new site is analysed then the VBA code needs to be modified so that the correct dataset store of 

weather conditions is identified. The new site needs to be stated in the ‘Inputs’ spreadsheet. The 

site also needs to match the ‘Daylight’ spreadsheet if an analysis of marine operations taking place 

only in daylight hours is to be undertaken. 

4.8 HINDCAST SHEET 

The ‘Hindcast’ spreadsheet contains the original hindcast dataset of weather conditions used to 

generate the datasets (placed in the ‘Weather’ spreadsheet) for the assessed array location. The 

site needs to match up with the ‘Weather’ and ‘Daylight’ spreadsheets, as well as the ‘array 

location’ entry in the universal inputs sections of the ‘Inputs’ spreadsheet. The column layout 

needs to match that seen in the ‘Weather’ spreadsheet (Table 4.2) and the wave period needs to 

be in the corresponding format (Te or Tp). 

The hindcast dataset is only used by the cost-benefit analysis part of the model to calculate 

estimated wait times ahead of WEC installation following an offsite repair, and the estimate power 

at each time step. 

 

 



 

Page 27 of 169 

 

5 PROCESSES 

The ‘Inputs’ spreadsheet contains macro buttons for three processes that run the O&M model 

simulations: 

 Fast run 

 Full run 

 Stat run 

5.1 FAST RUN 

The ‘fast run’ uses the information contained within the input spreadsheets to produce the 

‘Results’ spreadsheet containing output data of the simulated array for the specified lifetime. This 

is the only output of the ‘fast run’. The speed of this process varies depending on the selected 

inputs. One example is that if a 10 WEC array is chosen for a lifetime of 20 years, then the ‘fast run’ 

will be completed in approximately 30 seconds. However, if either or both of the cost-benefit 

analysis options are enabled, then this run time increases significantly. 

5.2 FULL RUN 

The ‘full run’ simulates the array lifetime in the same way that ‘full run’ does. In addition to 

producing the ‘Results’ spreadsheet, however, the ‘full run’ also creates a spreadsheet for every 

year of the array lifetime showing a detailed breakdown of the O&M logistics occurring at each 

time step. The ‘full run’ is useful for VBA debugging as well as providing a visual breakdown of the 

operations of the wave energy array. The ‘full run’ process does take significantly longer to 

complete its simulations than the ‘fast run’. 

5.3 STAT RUN 

The ‘stat run’ process carries out the same function as the ‘fast run’ but does so multiple times and 

produces a series of output spreadsheets containing statistical information, such as mean, 

maximum and minimum values. ‘Stat run’ should be the primary process when using the O&M 

model for analysis. The results of one simulated array lifetime contain a degree of variability due to 

the Monte Carlo nature of the model. Therefore, it is recommended that at least 50 lifetimes (a.k.a. 

‘loops’) are simulated in order to obtain reliable outputs, as demonstrated by Gray (2017). 

A ‘stat run’ will take approximately the same length of time as each of the ‘fast run’ simulations for 

the given inputs, summed for each loop. For example, 50 loops of the ‘fast run’ described in section 

5.1 (each taking ~30 seconds) will take approximately 25 minutes. Upon being pressed, the ‘stat 

run’ process presents the user with a message box asking how many loops are required, as shown 

in Figure 5.1. 



 

Page 28 of 169 

 

 

Figure 5.1. Initial message box for the 'stat run' process, requesting the number of iterations 
required 

It is not necessary to complete all loops at once, as the ‘stat run’ offers the user the chance to 

continue from the loops undertaken so far. The user can choose to do this by selecting ‘no’ when 

asked if they want to start a new results sheet, as shown in Figure 5.2. Clearly, it is important that 

none of the inputs are changed between sections; otherwise the results will be invalid. 

 

Figure 5.2. Secondary message box for the 'stat run' process, asking if new statistical sheets are 
required 

The ‘stat run’ process recognises the ‘use current weather’ universal input on the ‘Inputs’ 

spreadsheet (section 4.1.1). If this entry is set to ‘yes’ then the weather dataset stored in the 

‘Weather’ spreadsheet is used for all the loops. If it is set to ‘no’ then the dataset store must be 

open to allow the model to choose a dataset at random at the start of every loop. The ‘choose 

specific dataset’ universal input must be set to ‘no’ for statistical runs. Therefore, if the current 

dataset is to be used then it must correspond to the array lifetime. 

 



 

Page 29 of 169 

 

6 MODEL OUTPUTS 

As stated in the previous section, there are three types of output spreadsheets created by the 

O&M model processes: 

 Results 

 Run sheets 

 Statistical sheets 

Output spreadsheets are placed to the right of the ‘Inputs’ page in the model’s Excel workbook. At 

the start of a new process, all redundant output spreadsheets are deleted in order to avoid 

confusion between different sets of results. Monetary values are printed in the ‘output format’ 

specified in the ‘Inputs’ spreadsheet. 

6.1 RESULTS SHEET 

The ‘Results’ spreadsheet contains the key output information from a model simulation and is 

created by each of the processes detailed in section 5. The information is presented as a full 

breakdown showing average values for each WEC in every year of the array lifetime for the 

following parameters: 

 Availability 

 Parts costs 

 Other costs 

 Inspection costs 

For each parameter, the WEC values are listed first, followed by an average of all the WECs. The 

final row is the average value for the entire array. If there are no array-based fault categories or 

maintenance tasks then the ‘All wecs’ values will match the ‘Array’ results. The average results for 

the years of the array lifetime are printed in the columns, with an annual average printed in the 

extreme right column.  

Below the full breakdown of the four parameters is a table containing revenue information. For 

each year, as well as an annual average, the sum of the revenue for the following three cases is 

listed: 

 Total revenue earned by the array 

 Total revenue that could have been earned by the array if at 100% capacity 

 Sum of the lost revenue of the array 

The next breakdown shows the fees incurred by hiring external contractors for every year and the 

annual average. These values will be zero if ‘enable short term contractors’ is set to ‘no’ in the 

‘Labour’ spreadsheet. 

The ‘Vessels’ results show each of the boats listed in the order they appear in the ‘Vessels’ 

spreadsheet. For each year and for the annual average, three outputs are provided: 

 Total hire fees incurred 

 Total fuel cost incurred 

 Total number of intervals (i.e. time steps) the vessel is in use 



 

Page 30 of 169 

 

Below the vessel details is a table showing the causes of any delays to work. This includes delays to 

marine operations, as well as delays to undertaking onsite or offsite repairs. The first entry gives 

the number of instances (note: this is not the number of intervals) where work has been delayed, 

for each year and the annual average. Below that is a percentage breakdown of the following 

causes of delays: 

 Not enough space at the onshore/quayside O&M base - space delays 

 No appropriate vessel available    - vessels delays 

 Not enough spare parts are at the O&M base  - parts delays 

 The weather window is closed    - weather delays 

 Lack of available technicians     - technicians delays 

The key information is then brought together in the summary table. For each year and the annual 

average, the following information is provided: 

 Average availability of the array 

 Sum of the revenue earned by the array 

 Sum of labour cost for permanently employed technicians 

 Sum of additional labour cost for external contractors 

 Sum of parts costs 

 Sum of other costs 

 Sum of inspection costs 

 Sum of total vessel hire fees 

 Sum of total vessel fuel costs 

 Total operational expenditure (OPEX) 

 Profit (revenue minus OPEX) 

The next table contains the following information about all the fault categories: 

 Failure ID 

 Total occurrence 

 Total occurrence repaired 

 Parts costs per year 

 Other costs per year 

 Vessel hire fees per year 

 Vessel fuel costs per year 

 Total direct costs per year 

When repairs are carried out, the vessel hire and fuel costs are assigned to those failures that have 

occurred. If the repairs had to be undertaken at the O&M base, then the share of these costs is 

assigned based on the number of days each repair has incurred. If onsite repairs are undertaken 

then the share is based on the number of hours required to undertake each repair. The total direct 

costs for each fault category are calculated as the sum of the annual parts costs, other costs, vessel 

hire fees and vessel fuel costs. 

Also within the fault categories output table is information about the causes of lost revenue for 

each failure. Lost revenue is assigned based on the power loss from each simulated failure 

whenever overall power loss is reduced. If one or more failures have occurred causing a WEC to be 

offsite (i.e. producing no power), then the share of lost revenue is assigned accordingly. The lost 

revenue information is intended to assist decision making about WEC design and O&M strategy; 



 

Page 31 of 169 

 

therefore, the WEC-based fault categories have lost revenue assigned ahead of array-based 

failures. The total lost revenue per year is provided in the column to the right of the total direct 

costs. This is broken down further into: 

 Annual lost revenue whilst undergoing onsite repair 

 Annual lost revenue whilst in transit 

 Annual lost revenue whilst offsite 

 Annual lost revenue whilst onsite 

The sum of the annual lost revenues whilst either offsite or onsite is then broken down further into 

the causes of the lost revenue: 

 Annual lost revenue whilst waiting for space at the O&M base 

 Annual lost revenue whilst waiting for vessels 

 Annual lost revenue whilst waiting for spare parts 

 Annual lost revenue whilst waiting for a weather window 

 Annual lost revenue whilst waiting for technicians 

 Annual lost revenue whilst the WEC is onsite but not set for repair 

 Annual lost revenue whilst undergoing offsite repair 

At the end of the ‘fast run’ and ‘full run’ processes, the table of fault categories is rearranged in 

order of the total direct costs per year, with the largest first. For statistical runs, however, the table 

is kept in the order they are listed in the ‘Inputs’ spreadsheet. 

The final table in the ‘Results’ spreadsheet details the same information as the fault categories but 

for the scheduled maintenance events. The only differences are that there is only one ‘occurrence’ 

value and ‘inspection costs per year’ are included. 

Three graphs in histogram form are created in the ‘Results’ spreadsheet following either a ‘fast run’ 

or a ‘full run’. The first shows the share of annual OPEX incurred by each fault category, not 

including labour. This information is taken from the ‘total direct costs’ column in the fault category 

output table. The second graph shows the share of annual lost revenue for each fault category, 

using the ‘lost revenue total’ column. The final graph breaks down the total annual amount of lost 

revenue (i.e. from all fault categories) into the causes, including whilst being repaired and in 

transit. The ‘cost-benefit delay’ data is taken from the ‘total’ value in the ‘lost rev onsite not set’ 

column. The graphs are located in the top-left corner of the ‘Results’ spreadsheet. 

6.2 RUN SHEETS 

‘Run sheets’ are only created by the ‘full run’ process. They provide visual representation of the 

lifetime operations and maintenance of the array and can assist in code debugging and validation. 

The sheets are named ‘Year 1’, Year 2’ etc. up to the number of years specifying the array lifetime. 

The first four columns provide information about the date at each time step. The ‘interval’ is a 

continuing value throughout each year. The ‘month’, ‘day’ and ‘hour’ values follow the same 

convention as seen in the ‘Weather’ spreadsheet (see section 4.7). The months start in December 

for every year in order to group meteorological seasons together if required (as discussed in 

section 4.1.3). The ‘run sheets’ utilise Excel’s ‘freeze panes’ functions so that the date values and 

the headers are always on show, no matter where the user scrolls on the page. 



 

Page 32 of 169 

 

The two columns to the right of the ‘date’ section provide information about the state of the array. 

This includes showing the occurrence of array failures, as well as the power capacity of the array at 

each interval. The ‘array failures’ cells will say ‘operating’ unless there are any simulated array-

based failures. These will be listed when they occur. The ‘array failures’ cells will also indicate when 

array-based repairs or maintenance tasks are being undertaken.  

To the right of the ‘array’ section is detailed information about the state of each WEC at every 

interval. The ‘failures’ column is used to indicate whether the WEC has suffered any failures and 

will show when, and how, the WEC is being repaired. If the WEC has not suffered any failures then 

the cell will read ‘fail:’ with no colour fill. However, if the WEC has suffered one or more failures, 

then the cell will show a list of failure IDs and will be filled with the same colour as the classification 

of the most severe failure (i.e. red for major, amber for intermediate, green for minor). Intervals 

where a marine operation is being undertaken will be filled grey and will say either ‘being removed’ 

or ‘being installed’. When a WEC is offsite, the cell will say ‘off site’ and be coloured dark blue. If a 

WEC has failures that are being repaired offshore (i.e. onsite) then the ‘failures’ cell will read ‘under 

repair’ and will be coloured dark red. The adjoining column, labelled ‘maintenance’, contains 

information about scheduled maintenance events. If no WEC-based maintenance events are due to 

take place then the cell will read ‘not due’ with no colour fill. However, if any event is due then the 

cell will be coloured red and read ‘due:’ followed by the IDs of any scheduled maintenance 

categories that are due. For scenarios when the ‘no WECs allowed at base for maintenance’ entry 

on the ‘Inputs’ spreadsheet (see section 4.1.1) limits scheduled maintenance, then the cell will read 

‘delay retrieval for maint:’ with a list of the categories and will be coloured amber. 

The next section shows output information for all the vessels listed in the ‘Vessels’ spreadsheet. 

For each vessel, the name is shown above three columns labelled ‘state’, ‘hire fees’ and ‘fuel cost’. 

At each time step, the ‘state’ cell is either coloured green and read ‘not in use’, or coloured red and 

say ‘in use’. The ‘hire fees’ and ‘fuel cost’ cells keep track of the cumulative value of their 

respective parameters and show the values in pounds sterling (i.e. the working monetary format of 

the model). 

Columns relating to the ‘weather windows’ are located next to the ‘vessels’ section. There is a 

column for each of the operational limits types defined in the ‘Ops Limits’ spreadsheet (section 

4.4). The header is labelled ‘Ops 1’, ‘Ops 2’, etc. At each time step, the cell reads ‘CLOSED’ and is 

filled red if the weather conditions exceed the defined limits. Alternatively, the cell is filled green if 

the weather window is ‘OPEN’. 

A column is provided for each technician permanently employed at the O&M base, as defined in 

the ‘Labour’ spreadsheet (section 4.3), next to the ‘weather windows’ section. At each interval, the 

cell is filled red and reads ‘busy’ if the technician has been assigned to a task. Otherwise, the cell is 

green and says ‘free’. The final column in the ‘Technicians’ section contains basic information about 

external contractors. If no contractors are being used then the cell reads ‘no’ and is filled green, 

otherwise, the cell is red and reads ’yes’. There is no output for the number of contractors used at 

each time step, although this functionality could be added if deemed useful. 

The two columns on the far right of the ‘run sheets’ contain the number of spare parts located at 

the O&M base at each interval. The two options as defined in the ‘Inputs’ spreadsheet (section 

4.1.1) are ‘PTO unit’ and ‘instrumentation box’, although this can be expanded if relevant. 



 

Page 33 of 169 

 

6.3 STATISTICAL SHEETS 

The ‘stat run’ process produces the following output spreadsheets, in addition to the ‘Results’ 

spreadsheet: 

 Stat_mean 

 Stat_max 

 Stat_min 

 Stat_range 

 Stat_results 

At the start of a ‘stat run’, the user is asked for the number of ‘loops’ they wish to simulate, as 

stated in section 5.3. A ‘fast run’ process is undertaken for each of the requested loops, producing 

a ‘Results’ spreadsheet, as detailed in section 6.1. The table of fault categories is kept in the same 

order as listed in the ‘Inputs’ spreadsheet. At the end of the first loop, the ‘Results’ values are 

copied into each of the ‘stat_mean’, ‘stat_max’, ‘stat_min’ and ‘stat_range’ spreadsheets. For each 

subsequent loop, the statistical parameters inferred by the sheet names are calculated. Therefore, 

these four output spreadsheets are presented in exactly the same format as ‘Results’ but provide 

statistical information about the simulations. The three graphs that are printed to the ‘Results’ 

sheet for the ‘fast run’ and ‘full run’ processes are instead printed to the ‘stat_mean’ spreadsheet.  

The values for average availability, revenue and OPEX in each year of the array lifetime produced 

by each simulated loop are printed to the ‘stat_results’ spreadsheet. These values are also 

averaged across the lifetime of the array for each loop, and shown alongside the annual average 

profit on the far right of the spreadsheet, as seen in Figure 6.1. The name of the weather dataset 

used for each simulated lifetime is stored in column B. The mean values from all the loops are 

calculated for the four parameters and can be checked against the ‘stat_mean’ sheet. The 95% 

confidence intervals are calculated using the following equation: 

                        ̅  
   

√ 
 

Where  ̅ = mean, z-value = 1.96 (for 95% confidence), σ = standard deviation, n = population size 

Loop Dataset Year 1 Year n Average 

  Avail Rev OPEX Avail Rev OPEX Avail Rev OPEX Profit 

Figure 6.1. Layout of 'stat_results' output spreadsheet, where n = array lifetime 

The information presented in the ‘stat_results’ spreadsheet is used to create six charts which 

provided a visual representation of the results of the statistical simulations. The four charts printed 

at the far left of the spreadsheet show the annual results of each simulated lifetime in terms of 

availability, revenue, OPEX and profit across the lifetime of the array. The dominant visual in each 

chart is the bold line showing the average annual values of all loops. To the right of these are two 

more charts. The top one shows the cumulative profit earned throughout the array lifetime for 

each loop, again with the annual values represented by the bold lines. The histogram below the 

cumulative profit chart shows the annual average monetary values of revenue, OPEX and profit, 

with the 95% confidence bounds applied. 



 

Page 34 of 169 

 

7 MODEL ALGORITHMS AND VBA CODE 

As described previously and shown in Figure 3.1, the inputs to the model are stored in 

spreadsheets in a Microsoft Excel workbook. The output information is also printed to 

spreadsheets. However, the actual functionality of the O&M model is carried out in Visual Basic for 

Applications (VBA); the programming language supporting Excel. The VBA part of the model has 

been creating using an Object Oriented Programming (OOP) structure. This is necessary in order for 

the same functions to be utilised for every time step throughout each year of the array lifetime. It 

also allows the same series of functions to be used for each WEC and vessel in the array. This 

structure can be seen in Figure 7.1 showing most of the ‘modules’ and ‘class modules’ contained 

within the model. Modules are ‘objects’ containing any number of ‘procedures’ which are used to 

undertake specific actions when ‘called’. Procedures can either be ‘functions’ or ‘subroutines’. 

These are essentially the same thing, the only difference being that functions can ‘return’ a value to 

the calling procedure. A class module is also an object; however, it is lower down in the VBA 

hierarchy than a module and can therefore be created multiple times if required (i.e. for each WEC 

is the array). ‘Variables’ are used throughout the VBA code to store information in various types. 

Data types could include ‘integer’ (whole number between -32,768 and 32,767), ‘string’ (text), 

‘long’ (whole number up to 2 billion) or ‘double’ (a decimal number). 

This chapter details every aspect of the VBA code by going through each object in turn and 

describing every procedure. Flowcharts are used throughout the chapter to show how the 

procedures fit together to form the O&M model. The notation follows the same structure as the 

VBA language, where the object name is followed by a full stop and the name of the procedure (i.e. 

object.procedure). The names of objects, procedures and variables are printed in italic script. The 

objects are discussed in order of their hierarchy in the model code, where possible. This is intended 

to make the structure and functionality as clear as possible, thus providing a means of enabling 

future modifications as well as model validation. Data types are printed with an uppercase first 

letter (e.g. Integer, Double etc.) 

 



 

Page 35 of 169 

 

Functions

Run_program

Maint_manager_
object

Weather_object

Revenue_object

Failure_param Maintenance_param

Read inputs

For each vessel
Vessel_object

Parts_object

Delays_object

Hindcast_object

Array_object
For each WEC

WEC_object

Array_failures WEC_failures

Produce outputs

Revenue_output

Vessel_output

Delays_output

WEC_output

Array_output

Failures_output

Maint_output

Graph_creator

Maint_man_output

Cost_benefit_
analysis

Technicians_object Technicians_output

Key

Module

Class module

Annotation
 

Figure 7.1. Object Oriented Programming structure of the VBA-based O&M model, showing key 
modules and class modules 

 

 

 



 

Page 36 of 169 

 

7.1 FUNCTIONS 

The object functions is a module containing key procedures that are used by a number of other 

objects at various times of the model simulations. Whilst VBA has a large amount of in-built 

functions, these do not cover everything that the O&M model needs to use. Functions also contains 

new data types that are used in the model for defining variables.  

7.1.1 Defining new types 

It is often useful to create new data types in addition to those stored in VBA (e.g. Integer, Double 

etc.). For each of the five new data types defined, the term Enum is used. This means that the 

entries in the data types can be referred to either by their name or by their value. The value is 

determined by the order they appear in the Enum section, starting at zero. 

The severity defines the classification of faults and can either be major, intermediate or minor. 

The vessel_state asserts that a vessel can either be not_in_use or in_use. 

The array_state at any time can either be operating or being_repaired. 

In contrast, the WEC_state can be one of five options at any time. If the WEC is at the onshore or 

quayside O&M base then it is off_site. If the WEC is in transit then it is either being_removed or 

being_installed. If offshore work is being undertaken (i.e. a parts replacement) then the WEC is 

under_repair. Otherwise, the WEC is on_site. 

The yes_no data type can either be yes or no. Although this is binary in a similar way to Boolean 

(i.e. True or False), it has been included for situations where a yes or no answer is more readable to 

the user than True or False. 

7.1.2 Insert sheet 

The insert_sheet subroutine is used to check if a particular worksheet (a.k.a. spreadsheet) exists in 

the workbook. If it doesn’t exist then it is inserted and positioned at the end (far right) or the 

workbook. 

To achieve this, insert_sheet takes the arguments of book and sheet from the calling procedure. 

These correspond to the names of the workbook and the worksheet. The variable exists is defined 

as Boolean and i is used as the Integer counter. Exists is first initialise to False, stating that the 

worksheet does not exist in the workbook. The VBA term with is used to avoid unnecessary 

multiple instances of the higher level in-built functions workbooks (a collection of open workbook) 

and sheets (a collection of worksheets within that workbook). A for loop is used to check each 

worksheet by using the sheets function count to identify the number of sheets in the workbook. 

The sheets functions item and name are then used to identify the sheet that matches the 

requested worksheet name (sheet). When found, exists is changed to True and the for loop is 

exited to save time. After the loop, if exists is still False then the sheet is added (using the sheets 

function add), renamed, and then moved to the end of the workbook. 

7.1.3 Timer 

The timer function is used to calculate the length from a defined start_time (sent from the calling 

procedure) until the current time. It converts the calculated time into a readable format. 



 

Page 37 of 169 

 

The end_time variable has no defined data type as it is set to be the current time using the in-built 

function Now. The time_in_secs is a Long variable and is calculated using the in-built function 

DateDiff. This requires the two times, start_time and end_time, as an input along with the required 

output format ‘s’ (meaning seconds). The hour, minute and second values are all defined as Integer 

and named hr_val, mnt_val and sec_val respectively. An if condition is then used to determine 

which in format to return the time. If time_in_secs is less than 60 then only seconds are necessary. 

On the other hand, if time_in_secs is greater or equal to 3600 then the format needs to be in 

hours, minutes and seconds. Lastly, only minutes and seconds are needed if the time_in_secs is 

between 60 and 3600. Throughout these calculations, the in-built function Int is used to return the 

integer part of a number. The procedure is a function because it returns a String value back to the 

calling function by setting its own name, timer, to be the formatted time values. 

7.1.4 Delete run sheets 

The delete_run_sh subroutine loops through all the worksheets in the workbook and deletes the 

‘Results’ and ‘run_sheet’ spreadsheets described in section 6. 

The data type worksheet is used to loop through each sheet in the collection workbook.worksheets. 

The function DisplayAlerts is set to False in order to avoid Excel printing an error message when 

trying to delete a worksheet containing information. Throughout the loop, if the worksheet starts 

with either ‘year’ or ‘Results’ then it is deleted. The in-built function Left is used to identify a 

section of a String with a specified number of letters. The sheets function Delete is used to delete 

the worksheet. At the end of the subroutine, DisplayAlerts is reset to True to allow the model to 

show error messages again. 

7.1.5 Delete statistical sheets 

The delete_stat_shts subroutine follows exactly the same structure at delete_run_sht (section 

7.1.4). However, instead of searching for worksheets that begin ‘year’ or ‘Results’, it deletes all 

sheets that start with ‘stat’, thereby deleting all the statistical sheets described in section 6.3.  

7.1.6 Delete this sheet 

The delete_this_sht subroutine also loops through each worksheet in the workbook in the same 

way as described in sections 7.1.4 and 7.1.5. However, rather than search for a sheet whose name 

starts with certain words, it searches for the name of a worksheet that matches the argument 

this_sht. Again, DisplayAlerts is used to control and reset Excel’s ability to show error messages. 

7.1.7 Max and min 

Excel worksheets have in-built functions to calculate the maximum and minimum of a range of 

values, named MAX and MIN respectively. For VBA to use these functions, however, the code 

needs to first use the higher level functions Application and WorksheetFunction. This can make the 

code unnecessarily long, especially when find maximum and minimum values is quite a common 

feature of the O&M model. Therefore, the functions max and min have been created to find the 

maximum and minimum respectively of two input values, named var1 and var2. The function 

names are set to be either var1 or var2 and returned to the calling function. 



 

Page 38 of 169 

 

7.1.8 Terminate program 

The terminate_program subroutine is used throughout the VBA code to prompt the user to exit the 

simulations. The counter i is defined as an Integer and used to loop for values up to 200 (a nominal 

figure). At each step, the user is prompted to exit the program by pressing Ctrl + Break. It is useful 

to note that not all keyboards have a Break button. Instead, the keyboard may have a Pause button 

to carry out the same functions. In some keyboards, however, neither of these buttons exists. In 

these situations, a combination of the function key (Fn) + P, or Fn + Alt + P, needs to be used. 

7.1.9 Is in array 

The is_in_array function is mused to determine if a String value is stored in a certain array. It is sent 

the variables this_string and arr to achieve this by the calling procedure. The Integer value i is used 

as a counter. The return Boolean value temp_bool is initialised to be False. It is generally 

considered good practice to avoid changing the value of the function itself throughout the 

procedure. A for loop goes through each entry in the array (arr) and changes temp_bool to True if 

this_string matches the entry. Finally, the return value is_in_array is set to temp_bool. 

7.1.10 String array and 2d array 

For debugging purposes it is often quite useful to know exactly what values an array contains. The 

two functions str_array and str_2d_array take one dimensional and two dimensional arrays 

respectively and converts the entries into a readable format for printing in Excel’s message boxes. 

To achieve this, they take the array itself (this_array) and the array’s variable name (arr_name) as 

arguments from the calling procedure. A temporary return value, str, is defined with the String 

data type and initialised to read the arr_name, accompanied by appropriate formatting. Each entry 

in the array is then considered in a for loop using the counter i. The str_2d_array function also 

requires an additional counter, k, to deal with the extra dimension. Each entry is added to str with 

the appropriate formatting. The return value (i.e. the name of the function) is then set to str. 

7.1.11 Number of rows 

The function num_rows is used to obtain the total number of rows in a spreadsheet that contain 

data. The worksheet mysheet and the maximum row to search (max_row) are sent by the calling 

procedure. The Long temporary return value, no_rows, is initialised to zero. Each row, from 1 to 

max_row, is considered in a for loop using the counter i, defined as Long. The WorksheetFunction 

CountA is used to count the number of cells in the row that contain any kind of data. For each row 

that does contain data, one is added to the value of no_rows. When a row is found that contains no 

data (i.e. CountA = 0), then the for loop is exited. num_rows is set to be no_rows and returned to 

the calling procedure. The limitation of the function is that it will not operate as planned if a 

worksheet has been formatted to have, for example, one empty row between the headers and the 

main text for readability purposes. This needs to be carefully considered when adding any line of 

code to the O&M model which calls the num_rows function. 

7.1.12 Order a 2d array 

The cost-benefit analysis part of the model, previously discussed in section 4.1.1, uses the function 

get_ordered_array_2d to sort a two dimensional in a particular order. The array that needs to be 

sorted in sent to the function as OrigArray. It is a 2D array where the first dimension is the number 



 

Page 39 of 169 

 

of WECs in the array and the second dimension contains information about each WEC. This 

information is discussed later in section 7.12. To explain get_ordered_array_2d at this stage, it is 

important to know that the information stored in the array for each WEC consists of the device ID, 

followed by numerical values for each of the remaining entries. These entries refer to a particular 

aspect of repairs or maintenance and are entered in the required order by which to sort. 

The get_ordered_array_2d function starts by using variables, no_mach, lower_orig2 and 

upper_orig2 to define relevant boundaries of the array. A one dimensional array, hold_array, is 

created with the boundaries lower_orig2 and upper_orig2 and is used to store entries from a single 

WEC on a temporary basis. The return value, temp, is initialised to be the OrigArray. The function 

then only proceeds if there is more than one WEC in the array (if no_machs > 1). 

Note: ‘array’ in this context refers to a virtual array created by VBA, not the wave energy array. 

This is an important distinction and will be made clear throughout this document. 

Each entry of the 2D array is considered in a for loop, starting at upper_orig2 and moving 

backwards through the array using the Step -1 feature (ignoring the WEC ID entry) with the counter 

this_column. Looping backwards is this manner is a useful approach for when entries in an array or 

in a spreadsheet are repositioned or deleted. In this context, however, it means that the last entry 

of the 2D array (i.e. the one with the lowest priority) is ordered first. This method leaves the 

highest priority entry to last, producing a fully ordered array. For each this_column, a Do While 

loop is utilised to undertake the subsequent actions until all required swapping of entries for that 

column has been completed. The Boolean variable still_swaps_needed is first initialised to True. 

The Integer counter i is then used to loop backwards through each WEC in the array. If the next 

WEC in the array has a small value (in this_column) than the one under consideration, then 

still_swaps_needed is set to False and the values of this_column are moved up the array. The 

repositioning of the array is achieved by using hold_array to store a line of information and, one at 

a time, replace the previous line of values in the temp array. When this happens, the for loop 

moves onto the next this_column entry of the array. The returned 2D array, get_ordered_array_2d, 

is set to be temp. 

7.1.13 Workbook open 

The Boolean function WorkbookOpen is used to identify whether or not a workbook with a certain 

name (FileName) is open. WorkbookOpen is first initialised to True, stating that the requested 

workbook is open. If the function tries to Activate a workbook that is not open then an error 

message will be displayed. This knowledge is used so that when an error would otherwise be 

displayed, the feature OnError GoTo sends the code to the NotOpen section of the function. In 

NotOpen, the return value (WorkbookOpen) is set to False and the calling function is told to 

Resume Next actions. If the workbook is open, however, then it is activated successfully and the 

error handling feature is reset using On Error GoTo 0. 

7.1.14 Column letter 

The String function Col_Letter is used to convert the ID of a column into the letter reference used 

by Microsoft Excel. This is useful due to that fact that VBA refers to columns by a number (i.e. 1, 2, 

3 etc.), rather that the Excel letter system (e.g. A, B, C etc.). To achieve this, Col_Letter takes the 

number reference of the column (lngCol) and uses the in-built VBA function Split. The String value 

used in String is the Address of the first cell is the required column. This uses the Cells reference 



 

Page 40 of 169 

 

system, whereby the first entry is the row reference and the second is the column number 

reference. The cell Address is obtained with Excel’s ‘absolute’ notation ($), which is used by Split to 

find the column letter. 

Note: Cells is a function used extensively throughout the O&M model VBA code. To refer to a cell 

from an Excel spreadsheet, the syntax is Cells(row reference number, column reference number). 

This may be counter-intuitive to Excel users who are used to referring to cells by their column 

reference letter first, followed by the row reference number (e.g. A1, B5 etc.). 

7.1.15 Delete charts 

The function delete_charts searches through a specified worksheet (this_sheet) and deletes all 

charts that exist in the sheet. The data type ChartObject is used with its function Delete. A for each 

loop can be used to search through the spreadsheet because ChartObjects is a high-level collection 

(in a similar way to Workbooks and Worksheets). Although this procedure is a function, it does not 

return a value. In this regard, it could just as readily be defined as a subroutine. 

7.1.16 Find index reference 

The function find_index_ref is used to find the either the row or column reference of a cell 

containing a certain value within a worksheet. The function is sent information pertaining to the 

item (‘row’ or ‘column’) the calling procedure wants to find (find_this), the ID reference of the 

known row or column (index_const), the value to find (search_text), and the name of the 

worksheet (sht_name). The temporary return value, ret_val, is initialised to zero. An if condition is 

used to distinguish between the two options of find_this. In either case, an Integer counter, i, is 

used to loop through each cell in the known row or column (index_const). The in-built functions 

Cells and Value are used to identify the cell where search_text is found. The temporary return 

value, ret_val, is then assigned to the reference of the unknown row or column, and subsequently 

defines the final return value, find_index_ref. 

7.1.17 Round all decimals 

The function round_all_decimals is used to present to results of the O&M model in a readable 

manner. The calling procedure sends the function the name of the sheet it wants to format 

(sht_name). The Long variables, x and y, are used to refer to the numerical reference of columns 

and rows respectively. The variable cell_val is defined as a Variant data type because it is assigned 

to each cell in the sheet in turn, the format of which may vary. The maximum numbers of rows and 

columns to search through are defined using the term Const and set to be the values max_x and 

max_y respectively. The number of required decimal places to format is also defined as a Const 

using the variable name num_dps. The sheet name is activated and each cell is selected in turn. If 

the cell IsNumeric, is not IsEmpty (in-built VBA functions), and is not an integer, then the correct 

format is applied using the Cells function NumberFormat. Only five decimal places are currently 

accounted for, but this can be added to if required. 

 



 

Page 41 of 169 

 

7.2 RUN PROGRAM 

The primary module of the O&M model VBA code is named run_program. It defines a number of 

Global parameters (variables that can be used any class module), sets up the model, and controls 

the simulation processes. 

7.2.1 Global variables and constants 

At the top of the run_program module there are a series of variables defined as particular data 

types or as constant values. The majority of these variables are defined using the term Global, 

meaning that other modules and class modules can use the information stored by using the 

variable names. A small number of variables here are not Global, indicating that they are only used 

in the run_program module itself.  

The names of the primary input spreadsheets are stored in variables: 

 workbook_name    - stores the name of the active workbook 

 data_sheet    - stores the name of the ‘Inputs’ spreadsheet 

 vessels_sheet = “Vessels”  - name of the ‘Vessels’ spreadsheet 

 labour_sheet = “Labour”  - name of the ‘Labour’ spreadsheet 

 ops_limits_sheet = “Ops Limits” - name of the ‘Ops Limits’ spreadsheet 

 power_sheet = “Power”  - name of the ‘Power’ spreadsheet 

 weather_sheet = “Weather”  - name of the ‘Weather’ spreadsheet 

Useful variables and constants defined are: 

 data_col  - the column ID reference of the universal inputs  in the ‘Inputs’ sheet 

 time_step  - the resolution of the model in hours (must match the weather data) 

 no_intervals - stores the number of intervals in a year 

 no_run  - stores the array lifetime in years 

 run_sheet  - the prefix text of the output ‘run sheets’ 

 speed  - determines whether to undertake a ‘fast run’ or ‘full run’ process 

 normal_run - distinguishes between statistical runs and other processes 

 num_vessels - stores the number of vessels in the ‘Vessels’ spreadsheet 

 num_technicians - stores the number of technicians in the ‘Labour’ spreadsheet 

 short_term_contractors enabled – reads the contractor selection from ‘Labour’ 

 max_wecs_offsite – store the user selection on space at the O&M base 

 max_wecs_offsite_maint – stores the user selection on space at the O&M base just for 

scheduled maintenance 

 CBA_retrieval - stores the user selection on cost-benefit analysis for WEC retrieval 

 CBA_onsite - stores the user selection on cost-benefit analysis for onsite WEC repairs 

 CBA_allowance_days - stores the user selection on delaying CBA decisions if the WEC is 

due scheduled maintenance within a certain number of days 

 night_ops_on - stores the user selection on daylight marine operations constraints 

 this_location - stores the user selection of the array location 

Two variables are used to assist the weather selection aspect of the model: 

 store_name - stores the name of the weather dataset used for the simulation 

 choose_specific - stores the user selection on choosing a specific weather dataset 



 

Page 42 of 169 

 

Several class modules are defined using the As New [object] function: 

 maint_manager  - a new maint_manager_object class module 

 fail_param_list  - a new failure_param_list class module 

 maint_param_list - a new maintenance_param_list class module 

 fail_output_list  - a new failure_output_list class module 

 maint_output_list - a new maint_output_list class module 

Finally, some variables are used for storing output information: 

 results_sheet = “Results” - name of the ‘Results’ spreadsheet 

 output_money_format  - stores the user selection on format of monetary outputs 

 output_money_divider  - used to convert pounds into the required monetary format 

 graph_creator   - a new graph_creator class module 

 start_time    - stores the time at which a simulation began 

7.2.2 Start lifetime simulation 

The process ‘fast_run’ and ‘full_run’, previously described in section 5, are assigned to the 

subroutines fast_run_sub and full_run_sub respectively.  In each case, the subroutine run_multi 

called and is sent a value pertaining to the required speed of the process – 1 for a ‘fast run’ and 0 

for a ‘full run’.  

At the start of the run_multi subroutine, the start_time variable is set to be the current time using 

the in-built function Now. The ScreenUpdating function is set to False to stop Excel showing the 

model operations in an effort to cut down simulation time. As this subroutine is only called when 

the process buttons on the ‘Inputs’ spreadsheet are pressed, it is valid to set workbook_name and 

data_sheet to the names of the ActiveWorkbook and ActiveSheet respectively. The array lifetime is 

read from the data_sheet and stored in the variable no_run_loc. The Global variable speed is set to 

be the argument speed_loc, sent by fast_run_sub or full_run_sub, so that it can be used by other 

objects. normal_run is set to True; the purpose of this is made clear in the next section. To avoid 

confusion between the outputs from this process and any previous runs, all statistical sheets are 

deleted by calling functions.delete_stat_shts. The main program, run_om, is then called with the 

number of years (no_run_loc) as an argument. Following the model simulation, the output table of 

fault categories in the ‘Results’ spreadsheet is sorted in order of the greatest total direct costs 

incurred per year, as described in section 6.1. This is achieved by calling the function 

sort_fails_table located in the fail_output_list object (section 7.25.10), and uses functions.find_ 

index_ref to find the row reference of the table headers. The master control procedure in the 

graph_creator class module is then called to produce the graphs described in section 6.1. Finally, a 

message box prints the total time that the simulation has taken in a readable format using 

functions.timer with start_time. The in-built function MsgBox is a common feature of the VBA code 

used to display information to user. This is particularly useful in the contexts of error handling and 

debugging. 

7.2.3 Run main program 

The run_om function can be considered the primary procedure in the model’s VBA code. It is used 

to set up the model and carry out the VBA procedures for every time step in each year of the array 

lifetime, before printing the results. 



 

Page 43 of 169 

 

The identifiers irun and this_interval are first defined as the Integer data type. If the normal_run 

variable has been defined as True by the calling procedure (e.g. with the ‘fast run’ and ‘full run’ 

processes) then a progress bar is shown at the bottom left of the Excel workbook using the 

function DisplayStatusBar. This StatusBar is set to read "Initialising..." at first. The term Randomize 

needs to be used so that a different seed value is produced whenever a random number is set up 

by the code. This is vital to ensure that failures are simulated differently in every process, thereby 

making each new model run unique. The no_run Global variable, defining the array lifetime, is set 

to the value sent by the calling procedure.  The copy_weather_data function is call in order to use a 

new dataset of weather conditions for the run if required. This is explained further in section 7.2.6. 

If copy_weather_data returns the value zero, then an error has occurred and 

functions.terminate_program is called to prompt the user to exit the program. Every existing 

output sheet is removed to avoid confusion by calling functions.delete_run_sh. Before the main 

loop of the function, the procedure setup_class is called (with the number of years in the array 

lifetime as an argument) in order to set up and initialise each relevant class module. This is 

described in the next section. 

The main function of run_om occurs in a nested for loop (i.e. a loop within a loop). Each year in the 

array lifetime is considered using the identifier irun from 1 up to the specified number of years. The 

StatusBar located at the bottom left of the Excel workbook is updated for the current irun if the 

calling procedure has set normal_run to True. The DoEvents in-built function is used to ensure the 

progress bar is updated correctly. If a ‘full run’ process is taking place (i.e. if speed = 0) then the 

‘run sheets’ described in section 6.2 are inserted by calling maint_manager.insert_sheet_maint_ 

man. The nested for loop then considers every time step in that year (up to no_intervals) with the 

identifier this_interval. For each time step, the following procedures are called from the 

maint_manager class module: 

 determine_failure - carry out Monte Carlo analysis to simulate failures 

 determine_fix  - determine which WECs require maintenance or repair 

 determine_actual_fix - simulate marine operations and repair/maintenance tasks 

 print_interval  - print to ‘run sheets’ if ‘full run’ is taking place 

 next_interval  - set the model up for the next interval 

In each case, the called procedure is sent the variables irun and this_integer in order to recognise 

the current date. The StatusBar is then updated (if required) to read "Printing results", before the 

outputs are calculated and printed by calling the post_process procedure.  

7.2.4 Set up class 

The subroutine setup_class is used to create and initialise all the class modules in the VBA code. 

Firstly, the total number of intervals in a year (no_intervals) is calculated using the defined 

time_step. Values for the number of WECs in the array (no_total_wecs), the number of fault 

categories (no_fail_loc) and the number of scheduled maintenance events (no_maint_loc) are read 

from the relevant Cells in the data_sheet. Four Global variables are then stored by reading from the 

appropriate sheets: 

 num_vessels   - ‘Vessels’ sheet 

 num_technicians   - ‘Labour’ sheet 

 max_wecs_offsite  - data_sheet 

 max_wecs_offsite_maint - data_sheet 



 

Page 44 of 169 

 

The Boolean variables determining the users choice of whether or not to incorporate a cost-benefit 

analysis into the model, CBA_retrieval and CBA_onsite, are initially set to False. If the relevant cells 

reads ‘Yes’ then the variables is changed to True. The value of CBA_allowance_days is read directly 

from the data_sheet. The method of initialising a Boolean variable before reading the relevant cell 

is also used to define night_ops_on. The difference here being that the variable is first set to True 

and only changed to False if the relevant cell reads ‘No’. These default assignments are made so 

that the model runs as quickly as possible in the event of an alternative entry. As described in 

section 4, dropdown lists are used through the input spreadsheets to avoid any invalid entries. 

The value for output_money_format is read from the relevant cell in the data_sheet. Knowing that 

the monetary inputs to the model are all given in pounds sterling, the output_val_divider value is 

set to the appropriate number (i.e. 1 if ‘£’, 1000 if ‘£k’, 10x10^6 if ‘£m’). If a value outside the 

dropdown list is entered then an error message is produced and the user is prompted to exit the 

program (via functions.terminate_program). 

Following this process of reading and defining variables based on the input information, 

setup_class then initialises the class modules, as shown in Figure 7.2. 

run_program.
setup_class

fail_param_list.
start

maint_param_list.
start

maint_manager.
start

fail_output_list.
start

For each fault category

failure_param.
start

For each maintenance task

maint_param.
start

weather.
start

revenue.
start

For each vessel

vessel.
start

parts.
start

delays.
start

If CBA is needed

hindcast.
start

array_object.
start For each WEC

wec.
start

maint_output_list.
start  

Figure 7.2. Flowchart of the setup_class procedure 

 



 

Page 45 of 169 

 

7.2.5 Post process 

Throughout the VBA code, post_process procedures are used to produce the outputs described in 

section 6. The run_program, the post_process subroutine first uses insert_sheet to add the ‘Results’ 

spreadsheet to the workbook. The in-built Cells function Clear is used to wipe all data from the 

sheet (although none should exist due to the use of delete_run_sh in run_om). The function 

post_process in the maint_manager object is then used to produce the bulk of the results, as well 

as returning a row reference on which to start printing the next outputs (start_row). The output 

tables of fault categories and maintenance events are printed using the draw procedures in the 

fail_output_list and maint_output_list objects respectively. Finally, the sheet is tidied up using the 

created function.round_all_decimals (see section 7.1.17). 

7.2.6 Copy weather data 

The function copy_weather_data determines which dataset of weather conditions to use for the 

requested simulations and undertakes necessary error handling. It also stores the name of the 

weather dataset as the variable store_name.  

The return value, ret_val, is initialised to 1 to tell the calling procedure that the function has 

operated successfully. If an error is found then ret_val is set to 0. The next step is to read the array 

location selected by the user in the ‘Inputs’ spreadsheet (i.e. data_sheet) and store it as the 

variable this_location. copy_weather_data then converts this information into an acronym relating 

to the site. The only location entry coded for in the current model is ‘North Scotland’, which uses 

the acronym ‘FPT’ (relating to the WES-owned hindcast dataset for the Farr Point site). If time 

series’ of weather conditions for other sites are obtained then this code needs to be modified 

appropriately. Relevant error messages and information is displayed if this_location is not 

recognised. 

The defined site is subsequently used to identify the name of the workbook containing the Markov-

generated time series’ for the array lifetime (no_run). This is stored in the String variable 

weather_store_workbook. The value of no_run is also then used to define the first parts of the 

spreadsheet names (i.e. datasets of weather conditions) stored in the weather_store_workbook. 

This is assigned to the String variable start_store_name.  

Note: it is important that the user of the Markov Chain Model (see ‘Weather Simulation Report’, 

WES, 2017a) understands the required naming conventions defined here when creating the time 

series’.  

The user-defined entries of use_current_weather and choose_specific are read from the universal 

inputs column (data_col) of the ‘Inputs’ spreadsheet. If the user has chosen to not use the current 

weather (i.e. if use_current_weather = “No”), then they are prompted to open the 

weather_store_workbook if it not already (using WorkbookOpen). When the workbook is open, it is 

activated and the number of existing sheets is obtained (worksheet_count). If the user has chosen 

to select a specific dataset (i.e. if choose_specific = “Yes”) then a message box appears asking the 

user choose a dataset from a dropdown list. This is achieved by looping for each of the datasets 

with the identifier this_dataset. At each step, the store_name of the dataset is completed by 

combining this_dataset with the start_store_name of that workbook. A custom made form named 

select_dataset_form is completed using the data_list function AddItem for each dataset. At the end 

of the for loop, the function Show presents the user with the form and uses their selection to 



 

Page 46 of 169 

 

finalise the variable store_name for that simulation. However, if the user has set choose_specific to 

be “No” then a dataset is chosen at random using the Rnd function. Once the variable store_name 

has been finalised, the existing ‘Weather’ spreadsheet in the O&M model’s Excel interface is 

cleared of all data and the store_name dataset is copied in its place. This is achieved using the in-

built and custom functions; insert_sheet, num_rows, Select, Copy and PasteSpecial. In the ‘Inputs’ 

spreadsheet, the text part of the ‘use current weather?’ entry is modified to include the name of 

the new weather dataset.  

On the other hand, if the user has selected use_current_weather to be “Yes” then the existing 

weather dataset is to be used. An error message is displayed if the user has also selected 

choose_specific to be “Yes”. Otherwise, the store_name is read from the text part of the ‘use 

current weather?’ entry in the ‘Inputs’ spreadsheet. The left three letters of the existing dataset 

(store_name) must match the acronym for the site, and the length of the existing dataset must 

match the array lifetime. If either condition is not met then an error message is displayed and the 

user is prompted to exit the program, as described in section 7.2.3. 

7.2.7 Statistical run 

The subroutine stat_run_sub is entered after the user has pressed the ‘stat run’ button on the 

‘Inputs’ spreadsheet. The time at the beginning of the run is stored in the variable start_time using 

the function Now, and ScreenUpdating is set to False, in the same way as run_multi (section 7.2.2). 

The progress bar in the bottom left corner of the Excel workbook is updated using the function 

StatusBar. The number of lifetime iterations to undertake (gen_loops) is read from the user’s 

selection in the stat_run_form shown in Figure 5.1 (page 28). The identifiers workbook_name and 

data_sheet are set to be the names of active workbook and spreadsheet respectively, and the 

number of years in the array lifetime is read from the ‘Inputs’ sheet. The speed is set to 1 in order 

to indicate a ‘fast run’ process for each of the required loops. 

As stated in section 6.3, the user cannot choose a specific dataset of weather conditions for 

statistical runs. Therefore, an error messaged is produced if the choose_specific entry is read as 

“Yes” and the subroutine is ended. The value of normal_run is set to False, meaning that all 

updates of the progress bar (StatusBar) need to be made in stat_run_sub itself, rather than 

run_om. An array containing the considered statistical parameters, corresponding to the output 

spreadsheets discussed in section 6.3, is stored in the term variables: 

 Mean 

 Max 

 Min 

 Range 

 Results 

The user is then prompted with the message box shown in Figure 5.2 (page 28), asking if they want 

to start a new series of statistical sheets or continue with the existing ones. The user selected is 

stored in the new_results variable which has the data type VBMsgBoxResult. If the user clicks ‘Yes’ 

(i.e. if new_results = vbYes) then the existing statistical sheets are deleted (delete_stat_shts) and 

new ones are inserted (insert_sheet for each name in variables). The counter than keeps track of 

the total number of loops undertaken, num_runs_so_far, is set to zero. However, if the user clicks 

‘No’ when prompted (i.e. if new_results = vbNo) then the ‘stat_results’ spreadsheet is used to 



 

Page 47 of 169 

 

calculate the value of num_runs_so_far. The average values calculated on the far right of the 

existing ‘stat_results’ sheet are deleted. If the user clicks anything else then the program ends. 

If the statistical sheets have just been created (i.e. if num_runs_so_far = 0) then the headers in the 

‘stat_results’ spreadsheet are printed. This includes the parameters ‘Availability, Revenue’ and 

‘OPEX’ for every year of the array lifetime. It also print the output_money_format so the reader can 

see the units of the monetary values within having to refer to the ‘Inputs’ spreadsheet. If the 

statistical runs are continuing from previous ones, then the numerical values on the ‘stat_mean’ 

spreadsheet are converted into summations. This function is an important aspect of enabling the 

user to continue from previous statistical runs with the same input parameters. 

The subroutine then enters a for loop (with the identifier i) where all the requested iterations are 

considered, starting at the num_runs_so_far value plus 1. The StatusBar is updated at the start of 

each new loop to give the user an update of the model’s progress in numerical and percentage 

terms. The main function, run_om, is then called to undertake the simulation of that lifetime. If it is 

the first loop (i.e. if i = num_runs_so_far + 1) then the reference IDs of rows in the results_sheet 

containing information about availability (avail_row), revenue (rev_row), OPEX (opex_row) and 

profit (profit_row) are found using the identifier search_row and the correct text of the header. 

This text must match that defined in the maint_main_output object (see section 7.24) and the 

search must start at row 5 to avoid clashing with the ‘Availability’ breakdown table. Also, if it is the 

first loop and a new series of statistical runs (i.e. num_runs_so_far = 0) then the results_sheets is 

copied into each statistical sheet (named “stat_” plus the term in variables). If it is a new series of 

statistical runs (i.e. if num_runs_so_far = 0) and not the first loop (i.e. if i > num_runs_so_far + 1), 

then the sum values (in ‘stat_mean’) are calculated along with the minimum and maximum in their 

respectively output sheets. If it isn’t a new series of statistical runs then these values are calculated 

for all loops. The reference ID of the row to print the values to in the ‘stat_results’ sheet 

(this_print_row) is calculated using the value of num_runs_so_far. Printing is then carried out this 

this sheet using the identified rows of each parameter for each year of the array lifetime, as well as 

for the average (with profit). 

After the loop of iterations, the progress bar is updated to say “Printing results”. Statistical 

parameters are then calculated for the section of the ‘stat_results’ spreadsheet containing the 

average annual values (on the far right). This includes the mean, standard deviation and 95% 

confidence intervals. The percentage can change if required by modifying the constant z_value 

(1.96 is used for 95% confidence). These is achieved by using WorksheetFunction.Average and 

appropriately named variables such as average_avail. The total number of simulations, 

total_num_runs, is calculated using WorksheetFunction.Max and the loop IDs. Standard deviation is 

calculated using the typical sample population equation: 

  √
∑(   ) 

   
 

Where σ = standard deviation, x = current value, µ = population mean, n = population size. 

The ‘stat_mean’ spreadsheet is completed by dividing the summed numerical values by 

total_num_runs. The sheet ‘stat_range’ is filled by using the maximum and minimum values. Each 

sheet is then subject to the round_all_deimcals function for presentation. The output graphs 

described in section 6.3 are then created by calling graph_creator.master. The StatusBar is reset 



 

Page 48 of 169 

 

and the user is presented with the time of the process (using timer), thereby completing the 

statistical runs. 

7.3 FAILURE PARAMETERS 

As stated in section 7.2.1, the failure_param_list object is known throughout the VBA code by the 

variable fail_param_list. Figure 7.2 (page 44) shows that the object is first called by the setup_class 

procedure and subsequently creates a new failure_param object for each fault category listed in 

the ‘Inputs’ spreadsheet. The failure_param object of a particular fault category can be identified 

by any other class module by using calling fail_param_list and the function get_fail_param.  

7.3.1 Start 

When the subroutine start is called in fail_param_list, the total number of fault categories is 

assigned to the no_fail variable. This can be read by other class modules using the function 

get_no_fail. An array of the failure_param objects is set up and its size is defined (named 

fail_param) from 1 to no_fail using the ReDim operator. An identifier, i, is then used to consider 

each fault category in turn and initialises the object by calling fail_param(i).start. The reference ID 

of the row containing the information for each fault category in the data_sheet is sent to the 

fail_param as 1+i. This needs to be changed if the format of the ‘Input’s spreadsheet is modified. 

The subroutine start in each fail_param object is responsible for reading the relevant information 

from the data_sheet and storing it in the following variables: 

 name  - String, the name of the fault category 

 colour  - Integer, the ColorIndex of the ID cell used to define severity.  

 power  - Double, the power loss on the ARRAY caused by this fault 

 relevance  - String, determines if the fault relates to the ‘Array’ or to a ‘WEC’ 

 percent  - Double, convert the probability of the failure NOT occurring in a year 

into a probably of not occurring per time step 

 action_reqd - String, the action required to repair that fault 

 vessel_reqd - String, the type of vessel required for the repair/marine operation 

 hours_offshore - Double, the hours required for the repair/marine operation 

 ops_limits_type - Integer, the ID of the operational limits type required 

 days_onshore - Variant, the number of days the fault needs at the O&M base to be 

repaired (reads ‘N/A’ if onsite repair can be undertaken) 

 part   - Double, the cost of parts for the repair (in £) 

 other  - Double, the value of other costs incurred by the repair (in £) 

 techs_reqd - Integer, the number of technicians required for the repair 

 severity  - Severity data type (see section 7.1.1), determines the classification of 

the fault using the colour. Note: error handling is in place if the ColorIndex does not match 

a valid entry 

Each of these variables can be identified by any other class module by using the get functions (e.g. 

get_name, get_power etc.). For example, if a class module wanted to find the name of the fault 

with the ID ‘2’ then it could call fail_param_list. get_fail_param(2). get_name and assign it to a 

new variable in its own procedure if required. The final line in start calls the subroutine 

error_finder. 



 

Page 49 of 169 

 

7.3.2 Error finder 

The subroutine error_finder in the failure_param object is used to identify incompatible selections 

in the ‘Inputs’ spreadsheet. The example in the model is that a fault that requires the action 

‘Retrieve WEC’ (action_reqd) must have a defined number of days required at the O&M base 

(days_onshore). The custom function terminate_program is used to prompt the user to end the 

simulation. It is likely that the process of tailoring the O&M model to a specific device will produce 

more incompatible combinations in the table of fault categories. Care must be taken when making 

selections in the ‘Inputs’ spreadsheet to avoid such errors. 

Note: it is recommended that failure_param. error_finder is modified in order to identify all 

incompatible entries in the input table of fault categories 

7.4 MAINTENANCE PARAMETERS 

The information pertaining to the scheduled maintenance events, as described in section 4.1.3, is 

read by the VBA code in the same way as the failure category data (section 7.3). The 

maintenance_param_list object is defined as the Global variable maint_param_list and is set up by 

the setup_class procedure (in run_program). In maint_param_list, the number of the scheduled 

maintenance categories is stored in no_maint and can be accessed by other class modules using 

the get_no_maint function. Each maintenance event is assigned a maintenance_param object 

using the variable name maint_param. This can be accessed by other class modules with the 

function get_maint_param. 

7.4.1 Start 

The start subroutine in maintenance_param_list takes the number of maintenance events and the 

number of fault categories as arguments from the calling procedure setup_class. The number of 

failure categories is used here to identify the row reference (in the data_sheet) of each 

maintenance event when maint_param(i).start is called. Again, this must be modified appropriately 

if the format of the ‘Inputs’ spreadsheet is changed. 

The maintenance_param object operates in very much the same way as failure_param (described 

in section 7.3). Each relevant cell in the ‘Inputs’ table of maintenance events is read by the VBA 

code and then stored in variables. One difference from failure_param is that inspection costs are 

also included. Again, these costs must be in pounds sterling; the same format as parts and other 

costs. There is no error_finder procedure in maintenance_param, although this could be added by 

the user if deemed appropriate. Functions can be called by other class modules to get any piece of 

information using the syntax maint_param_list .maint_param(i).get_name for example. 

 

 

 

 



 

Page 50 of 169 

 

7.5 MAINTENANCE MANAGER 

The maint_manager_object (known in the code simply as maint_manager) is the primary control 

class module of the VBA object oriented program. Aside from the failure and maintenance-related 

class modules, the run_program module does not call any other object directly apart from 

maint_manager. This position of maint_manager in the hierarchy of the class modules is shown 

visually in Figure 7.1 (page 35). The description of the run_program object (section 7.2) showed 

how maint_manager is initialised by the setup_class procedure (see Figure 7.2, page 44), utilised 

several times for every time step in each year of the array lifetime, and also controls the printing of 

key outputs via the post_process subroutine. This section describes the procedures in the 

maint_manager object and refers to other sections of this report where relevant. 

7.5.1 Defining class modules 

At the top of maint_manager it is necessary to assign variable names to each class module used 

throughout the object. The variable names are: 

 weather    - weather_object 

 revenue    - revenue_object 

 vessel()    - vessel_object (note: one object per vessel)   

 parts    - parts_object 

 delays    - delays_object 

 hindcast    - hindcast_object 

 array_object   - array_object 

 maint_man_output_arr - maint_man_output_list 

In each case, the Dim As New terminology is used to define each name as a new object. The other 

exception is the array of vessel objects, where each vessel listed in the ‘Vessels’ spreadsheet is 

assigned a new vessel_object. It should be noted that the array_object name is not shorted in order 

to avoid confusion between the context of the wave energy array (i.e. a farm of WECs) and a VBA 

array used to store data. The other variables denoted here for use in the maint_manager object 

are num_wecs (i.e. the number of WECs in the array), run_sh (i.e. the relevant output sheet for the 

current year – only used during a ‘full run’ process), and ordered_list (used to prioritise wec repairs 

by the cost-benefit analysis). 

7.5.2 Start 

The start subroutine in maint_manager creates and initialises a number of class modules. First, it 

sets the num_wecs variable to be the no_total_wecs argument sent by setup_class. The weather 

object is then initialised in order to calculate accessibility of the weather conditions throughout the 

array lifetime (see section 7.6). An Integer wecs_per_matrix is assigned to the number of WECs 

used to create the power matrix (in the ‘Power’ spreadsheet) but initialising the revenue object. 

This also uses the weather conditions to calculate the expected revenue earned by the array at 

each time step (see section 7.7). The vessel array is then dimensioned so it can store information 

about all the vessels listed in the ‘Vessels’ input spreadsheet (see section 7.8). An additional vessel 

object (vessel(0)) is created and is used to store data pertaining to all vessels. The start procedure is 

called for each vessel. The parts (section 7.9) and delays (section 7.10) objects are also initialised 

here. The hindcast object (section 7.11) is only initialised if either of the cost-benefit analysis 



 

Page 51 of 169 

 

options (CBA_retrieval or CBA_onsite) have been enabled by the user. Finally, array_object.start is 

called in order to initialise all the WEC objects, as well as the array itself. 

7.5.3 Insert run sheets 

The subroutine insert_sheet_maint_man is only called in a ‘full run’ process is being carried out (i.e. 

if speed = 0), as described in section 7.2.3. It is used to insert all the ‘run sheets’; one worksheet for 

each year of the array lifetime, named ‘year1’, ‘year2’, etc. The variable run_sheet was previously 

defined as ‘year’. This is combined with each year (irun) to store the worksheet name in run_sh. 

The custom function insert_sheet is then used to add each sheet in turn and move each one to the 

end of the workbook. 

7.5.4 Determine failure 

The sole purpose of the determine_failure subroutine in maint_manager is to call the same 

procedure in array_object, using irun (current year) and this_interval (current interval) as 

arguments. Although this may seem like an unnecessary step, it is fundamental to the object 

oriented programming structure of the model so that the module run_program only ever calls 

certain class modules through maint_manager. The determine_failure procedure in array_object is 

used to undertake the Monte Carlo method of simulating when a fault has occurred on the array or 

on a WEC. This is described in much greater detail in section 7.13.2. 

7.5.5 Determine fix 

The determine_fix subroutine is used to decide whether any scheduled maintenance events are 

due to take place, and initialises the cost-benefit analysis if appropriate. The same procedure is first 

called in the array_object with irun and this_interval as the arguments, as seen with 

determine_failure. Then, if either of the cost-benefit analysis options (CBA_retrieval or CBA_onsite) 

have been enabled by the user, the cost_benefit_analysis object is created and initialised. This is 

referred to in the subroutine at cost_ben_analy. Using cost_ben_analy, the full list of WECs that 

need to be repaired or maintenance is obtained by calling the create_full_list function (stored in 

full_list). The full_list is then sorted into order of priority by calling cost_ben_analy.order_this_list, 

and stored in the ordered_list array. A detailed explanation of the cost-benefit analysis is given in 

section 7.12. If the cost-benefit analysis is not enabled, then the ordered_list is set up to list all the 

WECs in order of their IDs. The ordered_list in used in the attempt_fix subroutine of array_object 

so that certain WEC repair or maintenance actions are prioritised if required (see section 7.13.4). 

7.5.6 Determine actual fix 

The only operation undertaken by determine_actual_fix in maint_manager is to call 

array_object.attempt_fix, where marine operations and repairs are simulated. (see section 7.13.4). 

To enable attempt_fix to carry out its function, it must be sent the usual arguments defining the 

current date (irun and this_interval), as well the variable names of relevant objects (weather, 

vessel, parts, delays) and the ordered_list of WECs. 



 

Page 52 of 169 

 

7.5.7 Print interval 

The subroutine print_interval only runs if speed = 0 (i.e. if a ‘full run’ process is being undertaken). 

In this case, the purpose of print_interval in maint_manager is to control and format the printing of 

the ‘run sheets’ previously detailed in section 6.2.  

In order to control the printing of the ‘run sheets’, print_interval identifies the column where each 

section needs to start printing its information. This is achieving using a series of variables 

(date_start_col, array_start_col etc.) and considering each section in turn, taking the start column 

of the previous section as a reference point. Certain get functions are used to help identify the 

number of columns in a section (e.g. get_num_ops_lims_types). The relevant start_col variables are 

sent to each of the class modules shown in Figure 7.3 in order to print the information to ‘run 

sheets’. 

maint_manager
.print_interval

weather
.print_interval

array_object
.print_interval For each WEC

wec_object
.print_interval

For each vessel

vessel
.print_interval

parts
.print_interval  

Figure 7.3. Structure of maint_manager.print_interval 

Once a ‘run sheet’ has been completed (i.e. when this_interval = no_intervals) then it is formatted 

to produce a user friendly interface. Headers of the various sections are merged together with the 

text centred. This process uses a for loop with a nested Select Case to find the correct cells to 

merge (this_range). The WEC and vessel headers are also merged and centred for presentation 

purposes. Finally, all columns are resized using the AutoFit function and the date and header 

sections are ‘frozen’ (with FreezePanes) as described in 6.2. 

7.5.8 Next interval 

The next_interval subroutine is used to set the simulations up for the following time step. The 

maint_manager object first calls array_object.next_interval in order to finalise any completed 

repairs and make any vessels available again if possible. It is sent the variable names of the 

appropriate objects as arguments, as well as num_wecs. The subroutine next_interval in the parts 

object is also called to update the delivery of spare parts, if relevant. These procedures are 

described in much more detail in sections 7.13.7 and 7.9.7 respectively. Both procedures are sent 

the current date information, irun and this_interval, as arguments. 



 

Page 53 of 169 

 

7.5.9 Post process 

The bulk of the output information printed to the ‘Results’ spreadsheet (see section 6.1) is 

controlled by the post_process function in the maint_manager object. Throughout the function, 

the reference ID of the row to start printing (start_row) is updated whenever a new class module is 

called. Three class modules are assigned variables names for use in the post_process function: 

 array_output_arr - array_output_list 

 techs_object  - technicians_object 

The array_object.post_process is called in order to produce the full breakdown tables of 

availability, parts costs, other costs and inspection costs described in section 6.1. The function is 

described in more detail in section 7.13.13. The procedure is a function because it provides 

maint_manager with the object array_output_list. This then used to get the number of parameter 

tables printed (get_no_param) in order to define start_row for the next section. The breakdown of 

revenue is printed by calling draw in the revenue object. Here, the new row to start printing is 

calculated within the function draw, allowing it to be assigned directly to start_row. The 

technicians_object is not defined in maint_manager, so post_process needs to use the function 

array_object.get_technicians_object to be able to print the output relating to contracted 

technicians’ fees. Again, the value of start_row is assigned to the draw function to format the 

‘Results’ spreadsheet in a readable manner. 

Each vessel in the ‘Vessels’ spreadsheet is then considered in turn with the identifier i. The 

reference ID of the start row (vessel_start_row) is calculated using the number of parameters to 

print (get_no_param). The post_process function of each vessel_output object is then called in 

order to print the information. A subroutine is maint_manager named calc_total_vessel_costs is 

used to calculate and store the total costs incurred by all vessels. This is achieved by using the zero 

entry of the vessel objects (i.e. vessel(0)) and the associated functions get_vessel_output. For each 

year of the array lifetime, as well as the annual average, the vessel costs are summed using the set 

and get functions described later in section 7.22. The start_row value is updated using the number 

of printed parameters (get_no_param) and the number of vessels (num_vessels). 

Following the vessels section, the outputs for delays are printed by calling draw. Again, the new 

row is calculated within draw, allowing it to be assigned to the next start_row. The summary table 

for the array is then set up by calling maint_man_output_arr.start (indicating maint_man_output_ 

list, as described in section 7.5.1). This needs to read from the relevant objects (e.g. revenue, 

techs_object etc.) to enable key information to be extracted. The subroutine draw in maint_man_ 

output_arr is then called to print this information to the ‘Results’ spreadsheet (see section 7.24 for 

more details). Finally, the number of parameters in the summary table (get_no_param) is used to 

help define the return value of post_process, thereby allowing run_program to identify the next 

row for printing the outputs for failures and maintenance, as described in section 7.2.5. 

 

 

 

 

 



 

Page 54 of 169 

 

7.6 WEATHER 

The weather_object, defined in maint_manager simply as weather, is used to read information 

from the ‘Weather’ and ‘Ops Limits’ spreadsheets and convert the data into a useable format for 

the VBA code. This means defining ‘weather windows’ for marine operations (periods of 

accessibility) at each time step of the array lifetime. The weather object also stores the date 

information for each time step (i.e. month, day and hour). The three variables used throughout 

weather are num_ops_lims_types (i.e. the number of operational limits types in ‘Ops Limits’), 

wndo_array_store (i.e. weather windows), and date_array_store (i.e. date information). 

7.6.1 Start 

The start subroutine of the weather object is called during the setup_class procedure, shown by 

the flowchart in Figure 7.2 (page 44). At the top of the subroutine, a number of parameters are 

defined (Dim), including several constant values (Const). The following five constant values 

correspond to specific columns in the input spreadsheets, providing a clear means of editing the 

code if the format of the sheets is modified: 

 ops_lims_data_col - column containing all the input data in the ‘Ops Limits’ sheet 

 year_read_col  - column containing the year ID in the ‘Weather’ sheet 

 Hs_read_col  - column containing significant wave heights in the ‘Weather’ sheet 

 T_read_col  - column containing wave periods in the ‘Weather’ sheet 

 U_read_col  - column containing wind speeds in the ‘Weather’ sheet 

If a new dataset has not been chosen then the ‘Weather’ dataset will contain printed information 

about the energy and revenue generated by the array. This information is deleted using the Range 

function Clear. The number of operational limits types (num_ops_lims_types) is read from the ‘Ops 

Limit’s spreadsheet (ops_limits_sheet). This variable can be used by other class modules using the 

function get_num_ops_lims_types. The array that is used to store weather window information 

(wndo_array_store) is redefined to be a three dimensional array; 1 To num_ops_lims_types for 

each type of operational limits, 1 To no_intervals for each time step, 1 To no_run for each year in 

the array lifetime. The array used to store the date information is also redefined as three 

dimensional; 1 To 3 to store values of month, day and hour, 1 To no_intervals and 1 To no_run. In 

this regard, both the arrays explicitly store information about every individual time step 

throughout the array lifetime. 

The rest of the start subroutine takes place within a for loop which considered each of the 

operational limits types using the identifier this_lim_type (from 1 to num_ops_lims_types). The 

temporary variable this_read_row is used to find the reference ID of the row (in the ‘Ops Limits’ 

sheet) containing the header for that type (header_row). The number of parameters that 

this_lim_type considers is read from the appropriate row in the ops_limits_sheet. As described in 

section 4.4, a type with one parameter only considers significant wave height (Hs_limit), whilst a 

type with two parameters considers wind speed (U_limit) as well. If three parameters are 

considered then wind speed is still a constraint, but the significant wave height limit depends on 

the value of wave period, shown visually with the example in Figure 4.1 (page 24). The relevant 

input values are read from the ops_limits_sheet and stored in appropriately named variables. 

The for loop then becomes a nested for loop by considering each row (this_read_row) in the 

‘Weather’ spreadsheet (weather_sheet) as well as each limit type. As the start subroutine is called 



 

Page 55 of 169 

 

by setup_class outside of the year and intervals loop in run_om (see section 7.2.3), it must read the 

year and interval information directly from the weather_sheet. The year value (this_year) is read 

using the values of this_read_row and year_read_col. The interval value (this_interval), however, 

must be calculated based on the row position and this_year with the number of intervals per year 

(no_intervals). For this calculation, it is important that the variables are converted to the Long data 

type (using CLng) in order for the equation to work above values of 32,767 (the limit of Integer). 

The month, day and hour values are placed in date_array_store when this_lim_type = 1 (i.e. so the 

action is only undertaken once). The reading of these cells is based on each parameter’s column 

position relative to year_read_col. At each this_read_row, the values for significant wave height, 

wave period and wind speed are read (using the defined Const columns) and placed into the 

variables this_hs, this_T and this_U respectively. 

If the number of params_considered is either 1 or 2, then the value of this_hs is assessed against 

the Hs_limit. If the limit is exceeded by the weather conditions (i.e. this_hs > Hs_limit) then the 

weather window is not accessible. In this case, the correct entry in the wndo_array_store (i.e. the 

three dimension positions are this_lim_type, this_interval and this_year) is made to read “CLOSED”. 

If this limit has not been exceeded then the entry reads “OPEN”.  Additionally, if params_ 

considered = 2 then the wndo_array_store entry is set to “CLOSED” if the U_limit has been 

exceeded. 

This method of defining weather window is a little more complex if there are three params_ 

considered. The entry in wndo_array_store is first initialised to read “OPEN”. An If-Else series of 

conditions is then utilised to close the weather window if the limits have been exceeded. The wind 

speed is considered first, with the window “CLOSED” if this_U exceeds the U_limit. If the wind 

speed is within the limit, then the lower Hs boundary is considered. If this_hs is less than the lower 

boundary (lower_max_Hs) then the window stays “OPEN”. If neither of these conditions are met, 

then the upper boundary of Hs (upper_max_Hs) is taken into account. If the boundary is exceeded 

then the entry of wndo_array_store is set to “CLOSED”. However, if none of the aforementioned 

conditions are met, then the limit of significant wave height depends on the value of wave period. 

To assess this condition, the gradient and y-intercept of the sloped line (demonstrated in Figure 

4.1, page 24) must be calculated using following basic line equations. If the wave period value 

(this_T) lies above the sloped line on the graph (i.e. this_T < ((this_hs – line_y_intercept) / 

line_gradient) then the wndo_array_store entry is set to “CLOSED”. An error message will be 

displayed if an invalid value of params_considered has been found. 

            
     
     

 

                  (    ) 

If the user has selected the option to limit marine operations to daylight hours only (i.e. if 

night_ops_on = False) then the function is_daylight is used to identify whether the current interval 

is during daylight hours or not. If it is dark during the current interval (i.e. if is_daylight = False) 

then the weather window is set to be “CLOSED”. 

7.6.2 Get this window 

The function get_this_wndo is used by other class modules to identify if the weather conditions at 

a particular time step are accessible (“OPEN”) or not (“CLOSED”). For this information to be 



 

Page 56 of 169 

 

obtained, the function must be sent the type of operational limits (this_lim_type) and the current 

interval (this_interval) in the present year (this_year). The procedure must first identify situations 

where the requested interval lies in the following year. To avoid returning values as arguments, the 

values of this_interval and this_year are assigned to the variables temp_interval and temp_year 

respectively. If the interval is greater than the number of intervals in a year (i.e. if temp_interval > 

no_intervals) then the values are updated by adding one to temp_year and resetting temp_interval 

appropriately. If the newly updated year is beyond the array lifetime (i.e. if temp_year > no_run) 

then the return value (get_this_wndo) is set to “CLOSED”. Otherwise, the relevant String value 

from the wndo_array_store, set up by weather.start, is returned. 

7.6.3 Daylight hours 

As stated in section 7.6.1, the function is_daylight is used to determine if it is daylight during a 

particular interval in a given year. To achieve this, it utilises the ‘Daylight’ spreadsheet detailed in 

section 4.6. The function is sent this_interval and this_year by the calling procedure (e.g. 

weather.start) as arguments. The Boolean return value, temp_bool, is initialised to True, meaning 

that it is daylight in the requested interval. The month and hour values are read from the 

date_array_store and assigned to the variables this_month and this_hour respectively. The 

reference ID of the row in the ‘Daylight’ sheet containing header information for selected site 

(this_location) is then selected (header_read_row). This value will need to be changed if the format 

of the spreadsheet is modified. Currently only the ‘North Scotland’ site is considered but more 

locations can be added here, as described in section 4.6. The correct row reference for this_month 

is then identified using the header_read_row and stored in daylt_read_row. The column 

corresponding to the requested this_hour is identified (daylt_read_col). Again, these lines of code 

need to be edited if the format of the ‘Daylight’ is modified. If the relevant cell in the ‘Daylight’ 

sheet reads ‘Night’, then the return value (temp_bool) is set to False, telling the calling procedure 

that it is dark during the specified interval. The function name, is_daylight, must be set to the 

temp_bool variable in order for the calling procedure to recognise it. 

7.6.4 Print interval 

The print_interval subroutine is called by maint_manager, as shown in Figure 7.3 (page 52), only 

when a ‘full run’ process is taking place. It prints the date information (i.e. month, day, hour) for 

the current interval and year, as well as the weather window (i.e. accessible or not) for each type of 

operational limits. 

For each new output spreadsheet (run_sh) the headers are printed only once using the condition if 

this_interval = 1. This includes the section headers, ‘Date’ and ‘Weather Windows’, as well as their 

respective subsections. Each operational limits type’s header is printed using the identifier i from 1 

to the num_ops_lims_types. The date information is then printed to the relevant cells using the 

date_array_store values for the current this_interval and this_year. Similarly, the information from 

the wndo_array_store is extracted for each operational limits type. If the weather window for that 

time step is “OPEN” then the cell is filled green using the in-built function Interior.ColorIndex. If the 

window is “CLOSED” then the cell is coloured red. 

7.6.5 Longest daylight window 

An issue with the option of constraining marine operations to daylight hours has been identified. If 

a marine operation takes a significantly long time (e.g.  a subsea moorings inspection or repair) 



 

Page 57 of 169 

 

then the task might never be carried out if only daylight hours are considered. This is explained 

further in section 7.13.4. In these situations, it is useful to find the longest period of daylight for the 

selected array location using the weather function longest_daylight_wndo.  

In longest_daylight_wndo, the Integer return value (temp_int) is first initialised to be a nominal 

negative number. As with the is_daylight function (section 7.6.3), the header_read_row is 

identified for the selected site (this_location). Each month is then considered in turn using the 

identifier this_month in a for loop. The number of daylight time steps (count) is first initialised to be 

zero. After the daylt_read_row has been identified, a nested for loop considers each time step in a 

24 hour period with the variable this_hour. The relevant row and column (daylt_read_col) entries 

are used to read from each cell in the ‘Daylight’ spreadsheet and count the instances of “Day” for 

each month. If a new maximum is found (i.e. if count > temp_int) then the return value is updated. 

longest_daylight_wndo is then set to temp_int so the value can be recognised by the calling 

procedure. 

7.7 REVENUE 

The revenue_object is defined simply as revenue by the control class module maint_manager (see 

section 7.5.1). It is used to calculate and store the expected revenue earned by the array 

throughout its lifetime if it operated constantly at maximum capacity. It also keeps track of the 

actual revenue generated and controls the printing of information to the output spreadsheets. 

A number of variables are defined for use throughout the revenue object. The revenue_interval() 

array is used to store the expected revenue earned during every interval of the project lifetime. 

The output object controlling the printing of contractor fees of every year, revenue_output, is 

defined as revenue_output_arr(). The tariff is the user-defined sale price of electricity on the 

‘Power’ spreadsheet. The size of the power matrix might change for different types of WEC, so the 

number of significant wave height and wave periods entries (num_Hs_entries and num_T_entries 

respectively) need to be defined. The position of the Hs and T headers in the power matrix also 

need to be defined. T_header_row is identified in the start function using the Const value 

hs_header_col.  

7.7.1 Start 

At the beginning of the start function in revenue, the user-defined tariff (in p/kWh) is read from the 

power_sheet, as if the number of WECs accounted for in the power matrix (wecs_per_matrix). The 

total number of WECs is stored in the variable num_wecs. The headers used for validating the 

revenue calculations (average power, energy and revenue) are printed in the weather_sheet, to the 

right of the time series of weather conditions. The value of T_header_row is then defined using the 

custom function find_index_ref (section 7.1.16) with the search text “Hs (m)”. This code will need 

to be edited if the layout of the power matrix is modified.  

The number of entries of the two parameters, num_Hs_entries and num_T_entries, is calculated by 

the custom function get_num_entries located at the bottom of the revenue object. In each case, 

the function is told the name of the parameter (“Hs” or “T”), the header position (column or row 

ID) of that parameter, and the ID of the row or column to start searching. The get_num_entries 

function uses this information to loop through each row (if “Hs”) or column (if “T”). The return 

value, temp_ret, is updated at each new cell containing data. The for loop is ended when an empty 



 

Page 58 of 169 

 

cell is reached, thereby allowing the function to send temp_ret back to start as the num_Hs_entries 

or num_T_entries. The array revenue_interval is re-sized to allow information to be stored for every 

time step, regardless of the year. 

A nested for loop then considers each time step (my_interval) for every year (this_year) of the 

project lifetime. The identifier of the interval independent of years (long_interval) is calculated 

using this information and no_intervals (the number of intervals in one year). The relevant weather 

conditions (this_hs and this_T) are read from the weather_sheet using their Const defined position 

references (Hs_read_col and T_read_col). The total number of power matrices required to 

calculate power generated by the whole array (num_matrices) is calculated, assuming a linear 

relationship between the total number of WECs (no_total_wecs) and the number of WECs 

represented by a single power matrix (wecs_per_matrix). The array power for the considered 

interval, this_power, is then calculated using the function get_power (see section 7.7.2) multiplied 

by num_matrices. This is converted into energy across the time step (energy_these_hrs) before 

being stored in the correct position in revenue_interval (in £). These values are printed to the 

weather_sheet for validation. 

After the nested loop, a new output object revenue_output_arr is created and initialised (start) for 

every year in the array lifetime. These objects contain the actual revenue earned by the array and 

will be described in section 7.20. A zero entry (i.e. revenue_output_arr(0)) is also created in order 

to store annual average values. The revenue.start procedure is then set to be the wecs_per_matrix 

so that it can be used by the hindcast object if required (as described in section 7.5.2). 

7.7.2 Get power 

The get_power function takes values of the two weather parameters, this_hs and this_T, and finds 

the corresponding cell in the power matrix in the ‘Power’ spreadsheet (power_sheet). For each 

parameter, the first cell containing data (T_first_col and Hs_first_row) is identified using the header 

reference ID of the other parameter (hs_header_col and T_header_row). The return value, 

temp_power, is first initialised to be zero. Each wave period entry is then considered in turn using 

the column reference (T_first_col ) and the number of entries (num_T_entries). If the matching 

value (this_T ) is found then each significant wave height value is assessed in turn using 

Hs_first_row and num_Hs_entries. When the matching Hs value (this_hs) is found then 

temp_power is set to be the power contained in the correct reference cell. The function name 

get_power is set to temp_power to be used by the calling procedure. 

7.7.3 Get revenue information 

The function get_revenue can be used by other class modules to obtain the expected revenue 

earned by the array in a given interval (my_interval) and year. This date information is converted 

into an interval value independent of the year (long_interval) as described in section 7.7.1. The 

return value can then be set to the relevant entry in the revenue_interval() array. Other class 

modules can also access the output object (revenue_output_arr()) and the user-defined tariff by 

calling the functions get_revenue_output (with a year value) and get_tariff respectively. 

7.7.4 Update revenue 

The subroutine update_rev takes date information (irun and this_interval) and the power-

generating capacity of the array (array_power) to calculate the revenue-related outputs of the 



 

Page 59 of 169 

 

model simulations at each time step. The subroutine interacts with the output object (revenue_ 

output_arr) to set the values of earned, theoretical (i.e. expected) and lost revenue (see section 

7.20). The subroutine update_rev is only called at the end of the array_object function next_ 

interval (see section 7.13). 

7.7.5 Draw 

The draw function is used to produce the output information for the ‘Results’ spreadsheet. It is 

called as part of post_process in maint_manager (section 7.5.9). The draw function is described in 

much greater detail in section 7.20 (from page 130), along with the following procedures it 

interacts with in revenue: 

 run_title 

 calc_end 

 post_process_earned_rev 

 post_process_theory_rev 

 post_process_lost_rev 

7.7.6 Revenue estimate 

The function revenue_estimate is used by the cost-benefit analysis part (section 7.12) of the O&M 

model in order to estimate the total revenue that could be earned over a specified number of 

intervals. To achieve this, the calling procedure needs to provide revenue_estimate with access to 

the hindcast object, as well as the start and end intervals of the period (start_int and end_int 

respectively). These intervals are in a format independent of the year. The cost-benefit analysis 

part works with WECs only, not the full array, so the power capacity that is sent to 

revenue_estimate is the wec_power. This is converted into array_power using the number of WECs 

in the array (num_wecs) obtained by the start procedure (section 7.7). If necessary, the value of 

end_int is modified so that any intervals beyond the final time step of the array lifetime are not 

considered. 

The return value, temp_sum, is then initialised to zero, before a for loop considers each time step 

in the requested period (i.e. from the ‘long interval’ start_int to end_int). The function get_month 

is used to identify which month the selected interval is in. It achieves this by converting the ‘long 

interval’ into a time step value within a year (this_interval). It is not necessary to define the year as 

they are all the same length (i.e. leap years are not considered). The number of intervals in a day 

(24 hours) is stored in the variable ints_day. The Select Case operator is then used to identify the 

month in which this_interval lies. In revenue_estimate, the value of this_month is sent to the 

function get_estimated_monthly_rev in the hindcast object (see section 7.11) in order to get the 

estimate revenue from the hindcast dataset. The rev_this_month is added to the temp_sum for 

every interval after being adjusted for the array_power capacity. The function returns to value of 

temp_sum to the calling procedure in the cost_benefit_analysis object. 

 

 

 



 

Page 60 of 169 

 

7.8 VESSELS 

A vessel_object is created for every boat listed in the ‘Vessels’ spreadsheet (vessels_sheet), as 

shown by the flowchart in Figure 7.2 (page 44). The object is referred to in maint_manager by the 

array variable vessel, with the ID of the vessel in brackets (i.e. vessel(1)). Vessel is used to read 

information about each boat from the vessels_sheet and keep track of its availability and incurred 

costs throughout the model simulations. 

The object responsible for controlling the output of each vessel (vessel_output_list) is defined as 

vessel_output_arr. The state of the vessel is given the data type vessel_state, which means it can 

either be not_in_use or in_use, as defined in the functions module (see section 7.1.1). When a 

marine operation has commenced, the vessel will be in_use for a certain number of intervals. This 

information is stored and updated in the variable num_ints_left_in_use. The only Const variable 

defined for the vessel object is the number of print columns for each boat (num_print_cols). This is 

used for formatting the ‘run sheets’ during a ‘full run’ process. The information related to each 

vessel listed in the vessels_sheet is stored in the following variables: 

 name   - name of the vessel 

 id    - reference ID 

 free_travel_time  - hours from O&M base to site without towing 

 tow_time   - hours from O&M base to site with towing 

 fuel_cost_hr  - the incurred cost for fuel per hour the vessel is in use (in £) 

 personnel_capacity - the number of technicians allowed on the vessel at any one time 

 day_hire_fee  - the daily hire rate of the vessel (in £) 

 prob_vessel_avail - the probability of the vessel being available when required 

7.8.1 Start 

The start subroutine for each vessel object is used to read all the information for the vessel from 

the ‘Vessels’ spreadsheet (section 4.2) for use in the VBA code. It also initialises the output object 

and common variables for the class module. 

The calling procedure of start is contained within the maint_manager object (see Figure 7.2, page 

44). It creates each vessel.start and sends it its reference ID as an argument (i). As stated in section 

7.5.2, a zero entry (i.e. vessel(0)) is also created in order to contain “Sum” values. The subroutine 

start only begins to read the information from the vessel_sheet is the value of i is not zero. The 

Integer data_row is used to define the position (i.e. row reference) of the information for that 

vessel in the vessels_sheet. The code then reads the relevant pieces of information and stores them 

in the appropriate variable names. Error handling is in place to make sure that the information is 

being read correctly (i.e. id should be the same as i). As stated in section 4.2, the cell for tow_time 

will read “N/A” if the vessel cannot be used to tow the WEC to and from site. In this case, the 

tow_time variable is set to zero. An error message is displayed to the user if a vessel capable of 

towing a WEC has a personnel_capacity less than the number of technicians needed for an 

installation/retrieval operation. This information is read from the relevant cell in the data_col of 

the data_sheet. 

All vessels have the state (with the vessel_state data type) initialised to not_in_use and the number 

of intervals left in use (num_ints_left_in_use) is set to zero. The output object, vessel_output_arr, is 

initialised by calling the start subroutine (see section 7.22.2). 



 

Page 61 of 169 

 

7.8.2 Get functions 

The variables within the vessels object can be accessed by other class modules by calling the get 

functions (e.g. get_name, get_num_ints_left_in_use, get_vessel_output etc.) 

7.8.3 Check availability 

The Boolean function check_availability utilises the user-defined probability of the vessel being 

available (prob_vessel_avail), assigned in the start procedure. The in-built function Randomize is 

used in order to generate a truly random number whenever the procedure is called. The return 

value, temp_bool, is first initialised to True. If the random number between 0 and 1 (rand) is 

greater than prob_vessel_avail then the return value is changed to False, meaning that the vessel is 

not available. 

7.8.4 Mobilise boat 

The subroutine mobilise_boat is used to set the vessel state to be in_use. It also updates the output 

object by calling the subroutine add_ints_working in vessel_output_arr. Mobilise_boat is sent the 

number of intervals that the vessel will be in use for (num_ints), as well as date information (irun 

and this_interval). The value of num_ints_left_in_use is set to be num_ints. 

The subroutine next_interval in each vessel is used to update the number of intervals the vessel has 

remaining on the current marine operation. It achieves this by subtracting one from the current 

value of num_ints_left_in_use, regardless of the vessel state. An if condition is in place to ensure 

that the value of num_ints_left_in_use does not drop below zero. 

7.8.5 Demobilise boat 

The subroutine demobilise_boat is called in order to set the vessel state to no_in_use. An error 

message will be displayed if a procedure tries to call demobilise_boat whilst the value of 

num_ints_left_in_use is still greater than zero. 

7.8.6 Calculate hire fees for an operation 

The function calc_hire_fees_for_op is used to calculate the total hire fees incurred for a marine 

operation of a particular length of time. It takes the arguments of the current interval 

(this_interval) and the number of hours of the marine operation (hrs_transit). The return value, 

total_hire_fees, is first initialised to zero. As described in section 4.2, vessel hire fees are paid as a 

flat rate across for any length of time the vessel is used during a 24 hour period (i.e. from midnight 

to midnight). Therefore, the function num_new_days is used to calculate the total number of new 

days that occurs across the length of the marine operation (new_days). This value is then 

multiplied by the day_hire_fee (defined in start) to give the total_hire_fees. 

The function num_new_days takes the variables this_interval and hrs_transit as arguments. The 

number of intervals_used during the operation is calculated by dividing hrs_transit by the 

time_step of the model, and using the WorksheetFunction RoundUp. The return value, count, is 

initialised to zero ahead of a for loop to consider each interval in the marine operation. A line of 

code accounts for the marine operation crossing over into a new year by checking if i > 

no_intervals. The day at each time step is found by dividing the interval value (int_now) by the 

number of intervals in a 24 hour period (i.e. 24 / time_step), and using RoundUp. If the interval 



 

Page 62 of 169 

 

under consideration is the first one then count is updated to 1. Otherwise, a similar piece of code is 

used to calculate the day at the previous interval (prev_day). If this does not match the current day 

(this_day), then count is updated. An error message will be displayed if count is not updated at any 

point. 

7.8.7 Calculate fuel costs for an operation 

The function calc_fuel_for_op takes the argument of hr_transit (i.e. length of the marine 

operation) from the calling procedure and multiplies it by the fuel cost per hour for that vessel 

(fuel_cost_hr) to find the cost of fuel for the marine operation. 

7.8.8 Add operation costs 

The subroutine add_op_costs interacts with both the functions calc_hire_fees_for_op (section 

7.8.6) and calc_fuel_for_op (section 7.8.7) in order to update the vessel output costs for a marine 

operation. It takes the year value (irun) as an argument from the calling procedure so that the 

output object (vessel_output_arr) knows which entry to update (see section 7.22.3).  

7.8.9 Print interval 

The subroutine print_interval is used to print the vessel information for every interval during a ‘full 

run’ process, as described in section 6.2. The main header (“Vessels”) is printed to the correct cell 

in the run_sh (i.e. spreadsheet named ‘year1’ etc.) for the first interval of a year, along with the 

sub-headers of the vessel name, “State”, “Hire fees (£)” and “Fuel cost (£)”. At each interval, if the 

vessel is not being used (i.e. state = not_in_use) then the correct cell shows this information and is 

filled green. Otherwise, the cell reads “In use” and is filled red. The cumulative values of hire fees 

(cumulative_fees) and fuel costs (cumulative_fuel) are calculated by looping through each year up 

to and including irun, before being printed to the correct cells. 

7.8.10 Post process 

The subroutine post_process is called at the end of the main program in order to control the 

printing of vessel outputs. The header of the vessels section is printed to the results_sheet by 

calling the run_title subroutine (see section 7.22.5) from the output object (vessel_output_arr) 

once using the condition if id = 1. The results are printed by calling the draw subroutine (see 

section 7.22.4). 

 

 

 

 

 

 



 

Page 63 of 169 

 

7.9 PARTS 

The parts_object is known as parts by the maint_manager object. It is used to control the assigning 

of spare parts to certain WEC pairs and keeps track of the delivery time when new parts are 

ordered. Spare parts are only utilised for faults that can be corrected whilst the WEC is on site (i.e. 

offshore) by replacing the PTO unit or the instrumentation box, for example. The parts object is 

intended to provide a framework for a user who may wish to investigate onsite repairs further. 

Future modification could see the additional of an input spreadsheet detailing the inventory of 

spare parts at the O&M base, and could include a more detailed understanding of delivery and lead 

times. 

The variables that are defined for use throughout the object are: 

 type_name()  - an array to store the names of spare parts 

 desired_num()  - the desired number of spare parts of each type to be located at 

the O&M base at any time 

 current_num  - the number of spare parts of each type located at the O&M base 

at a particular interval 

 num_types  - the number of types of spare parts 

 delivery_intervals - the number of intervals to wait for a new delivery 

 num_parts_to_order - the number of new parts to be ordered 

 wait_time_array  - the time remaining on a delivery of each spare part 

 total_num_spares - the total desired number of spare parts of all types 

7.9.1 Start 

The start subroutine is called by maint_manager as part of the setup_class procedure, as shown in 

Figure 7.2 (page 44). The model considers only replacement of PTO units or instrumentation boxes 

at present (num_types = 2), although this can be modified if required. The arrays type_name, 

desired_num and current_num are all re-dimensioned to store information for each part in 

num_types. The variables num_parts_to_order and total_num_spares are both initialised to zero. 

The user-defined input of the ‘delivery time (days)’ on the ‘Inputs’ spreadsheet (see section 4.1.1) 

is multiplied by the number of intervals in a day (i.e. 24 / time_step) to set the variable 

delivery_intervals. Each type of spare part is considered in a for loop with the identifier i. The 

descriptive cell in the universal inputs table in the data_sheet is read as the String my_str. In the 

current model version, this would read ‘Number of spare PTO unit’ and ‘Number of spare 

instrumentation box’. The in-built function Mid is then used to separate the ‘Number of spare ‘ text 

from the value of my_str, thereby identifying the type_name. The input value of each type is then 

stored in the array desired_num. The number of spare parts at the O&M base (total_num_spares) 

is updated for each type by adding the value in desired_num for each type (i.e. desired_num(i)). 

The value of current_num is also initialised to be the user-defined input value. 

If the value of total_num_spares is greater than zero then the wait_time_array is re-dimensioned 

as a 2-D array, with the first entry being the number of types and the second entry being the total 

number of spare parts. A nested for loop is used to initialise the wait_time_array. For each of the 

num_types, every part of that type is considered in turn using the desired_num array. The first 

entry of wait_time_array is filled with the ID of that type, whilst the second entry (pertaining to the 



 

Page 64 of 169 

 

wait time on delivery) is set to be zero. Error handling is included to ensure that all entries of 

wait_time_array have been filled successfully. 

The number of types of spare parts (num_types) can be accessed using the function get_num_ 

parts_types. 

7.9.2 Order new parts, if available 

The subroutine order_new_parts takes the arguments of the type of part (this_type) and the array 

of failures on the WEC (fail_arr) from the calling procedure. It interacts with two other procedures 

in the parts object, this_type_id (see section 7.9.6) and all_parts_available, in order to update the 

correct entries in the wait_time_array and keep track of the number of spare parts at the O&M 

base (current_num). 

The Boolean function all_parts_available is sent the values of this_type (String) and fail_arr (array 

of failures). It first sets the return value, temp_ret, to False and initialises the counter variables, 

count_reqd and count_avail, to zero. An array temp_current_num is created to store the 

current_num values (i.e. number of each parts type currently at the O&M base) without the risk of 

modifying the array itself. The function correct_type_name (see section 7.9.5) is then used to 

double check that the value of this_type is a valid type. Each failure in the fail_arr is considered 

using the identifier i. The action required to correct the failure is accessed from the fail_param_list 

object (see section 7.3) and should start with the String “Replace” (i.e. identified with the in-built 

String function Left).  The rest of the action_reqd entry is then read and stored in the variable 

read_type. If the type identified with the fault matches the requested this_type then the ‘number 

required’ counter (count_reqd) is updated. The relevant value in the temporary store array 

(temp_current_num) is checked to see if there is a part of that type available at the O&M base. If 

so, then the correct value in temp_current_num is updated and the ‘number available’ counter 

(count_avail) is updated. Error handling is in place to ensure that all_parts_available is not called 

when there are no failures. Once all faults in fail_arr have been considered, if there is a part of the 

required type available (i.e. if count_avail > 0) then the value of num_parts_to_order is set to 1 and 

the calling procedure (order_new_parts) is told of the success (temp_ret = True). This feature 

assumes that only one part of each type is needed per WEC. If this is not the case, then this 

procedure needs to be modified, with the output conditions accounting for count_reqd as well as 

count_avail. 

If the value of all_parts_available is returned as True, then subroutine order_new_parts continues 

by first identifying the ID of the requested type (type_id) by sending the String variable this_type to 

the function this_type_id. The current number of parts of the specified type (current_num(type_ 

id)) is then updated by subtracting the value of num_parts_to_order as defined during all_parts_ 

available. In effect, this simulates the site manager assigning a spare part (or parts) to a particular 

WEC. A nested loop then considers each of the total_num_spares at the O&M base (j) for each of 

the num_parts_to_order (i). If the first entry of wait_time_array for the spare part under 

consideration matches the type_id and if that part is not being delivered at the moment (i.e. 

wait_time_array(2, j) = 0), then the second entry of wait_time_array is set to be the 

delivery_intervals. This simulates the site manager placing the order for the new parts and then 

having to wait a certain number of days until they are delivered and ready to be used. 

 



 

Page 65 of 169 

 

7.9.3 Multiple replacement types 

The String function multi_replacement_types_arr is sent a list of the failures on a WEC (fail_arr) by 

the calling procedure and is used to return a String list of the types of spare parts needed for those 

failures. 

The variable count_diff, used to count the number of different types of spare parts, is initialised to 

be zero. Each failure in the fail_arr is considered in turn, with the String variable this_type assigned 

to be the action_reqd to correct that failure (obtaining by interacting with the fail_param_list 

object). If the String value starts with “Replace”, then this_type is re-assigned to the name of the 

type of part. If the return array parts_types_arr has not yet been created (i.e. if count_diff = 0) then 

count_diff becomes 1, and the first entry of parts_types_arr is set to contain the String this_type. 

For failures considered after parts_types_arr has been created, this assignation is only undertaken 

if this_type is not already an entry in parts_types_arr. To check this, the custom function 

is_in_array is used (see section 7.1.9). If the value of count_diff is still zero at the end of the failure 

for loop, then the only entry in parts_types_arr will read “none”. An error message will appear if 

the function is called with an empty fail_arr (i.e. WEC having no failures). The function name, 

multi_replacement_types_arr, is set to be parts_types_arr for use by the calling procedure. 

7.9.4 Multiple parts types available 

The Boolean function multi_parts_types_available is used to determine if all required parts from a 

list of failures (fail_arr) are available at the O&M base. The String array variable parts_types_arr is 

set to be the returned value from the function multi_replacement_types_arr (see section 7.9.3). If 

any parts types are identified (i.e. array value is not “none”), then the count of the parts available is 

initialise to zero. A for loop then considers each entry in parts_types_arr and uses the function 

all_parts_available (described in section 7.9.2) to find if that type is available. If so, then the count 

value is increased by 1. Following the loop, if all parts have been identified as available (i.e. if count 

= UBound(parts_types_arr)) then the Boolean return value is set to True. Otherwise, it returns 

False. An error message will be displayed if parts_types_arr = “none”, due to the fact that this 

function should only ever be called when relevant, as will be seen later in section 7.14. 

7.9.5 Correct type name 

The Boolean function correct_type_name takes a String value (this_type) and checks whether it is 

the same as one of the parts types. This error handling procedure is in place to ensure that the user 

doesn’t change the descriptive inputs on the data_sheet without realising that the parts object will 

be affected. The function utilises the type_name array defined in the start procedure. 

7.9.6 This type ID 

The function this_type_id takes a String value (this_type) and converts it into the ID value (Integer) 

of the parts type. The function utilises the type_name array defined in the start procedure. An 

error message is displayed if the input text (this_type) does not match any of the entries in 

type_name. 

7.9.7 Next interval 

The next_interval subroutine is called by the maint_manager object, as described in section 7.5.8, 

in order to set the parts object up for the next interval. The subroutine loops for each of the spare 



 

Page 66 of 169 

 

parts in total_num_spares (i.e. as defined by the user in the data_sheet) using the identifier i. The 

variables this_type_id and this_wait_time are set to the first and second entries of the wait_time_ 

array respectively. If that parts is currently being delivered (i.e. if this_wait_time > 0) then the 

second entry of wait_time_ array is updated accordingly. If this update results in the wait time 

becoming zero (i.e. the part has just arrived onsite), then the current_num entry for that type 

(this_type_id) is updated. 

7.9.8 Print interval 

The print_interval subroutine is called if a ‘full run’ process is being undertaken (see Figure 7.3, 

page 52) and is used to print the number of spare parts of each type stored at the O&M base at 

each interval. If it is the first interval of the year (i.e. if this_interval = 1) then the header “Spare 

parts” and sub-headers with the name of each type (using the type_name array) are printed. A for 

loop allows printing of the relevant values from the current_num array for each parts type. 

7.10 DELAYS 

The class module delays_object is referred to as simply delays by the control object maint_ 

manager. It is used to update the causes of delays to marine operations or other work throughout 

the lifetime of the WEC array. The corresponding output object, delays_output, is accessed with 

the variable delays_output_arr. 

The delays object and output are structured in a similar way to revenue (section 7.7), whereby the 

main class module (i.e. delays_object) acts as the output control object, as well as the main source 

of functionality. This is a slight difference to other sections of the model, such as the vessels object, 

where the responsibility for output control is assumed by the vessel_output_list, rather than the 

vessels_object itself. 

Only two procedures in delays are described in this section; start and add_this_delay. The rest of 

the class module is discussed in section 7.23. 

7.10.1 Start 

The start subroutine in delays is called during the key procedure setup_class, as shown in Figure 7.2 

(page 44). It is used purely to create and set up the output objects for the causes of delays. A new 

delays_output_arr object is created and initialised (by calling start, see section 7.23) for each year 

of the project lifetime (no_run). The zero entry (i.e. delays_output_arr(0)) is used to store the 

annual average values. 

7.10.2 Add this delay 

The subroutine add_this_delay is called whenever a marine operation or any other work is delayed. 

It is sent the current year (irun) and the cause of the delay (delay_type) by the calling function. For 

the relevant output object (i.e. delays_output_arr(irun)), the work_attempted value is updated, 

together with the specified cause of the delay. If the cause is not recognised then an error message 

is displayed. More detailed on how this information is used by the VBA code is given in section 

7.23. 

 



 

Page 67 of 169 

 

7.11 HINDCAST 

The class module hindcast_object is referred to as hindcast by the maint_manager (see section 

7.5.1). The hindcast object is only created if either of the cost-benefit analysis options 

(CBA_retrieval or CBA_onsite) have been enabled by the user (see section 4.1.1). It is used to 

convert the hindcast time series of weather conditions stored in the “Hindcast” spreadsheet into 

estimates for monthly revenue generated by the array and wait times prior to installation of a 

WEC. Although the accuracy of weather forecasting has improved greatly in recent years, it is likely 

that hindcast datasets will still play a part in decision making for offshore operations and 

maintenance for many years to come. Incorporating such analysis into the O&M model could 

provide an additional level of realism to the functionality of the tool. The code stored in hindcast is 

very similar to the weather object (section 7.6). Throughout this section, only the key differences 

from the weather object are discussed in detail. 

The primary information calculated by the hindcast object is stored in two arrays with the Double 

data type: 

 estimated_monthly_rev  - estimated revenue earned by the array (if at 100% 

capacity) in each month 

 estimated_months_install_wait - estimated number of intervals to wait for a weather 

window suitable for WEC installation in each month 

The name of the ‘Hindcast’ spreadsheet is defined for the object as hindcast_sheet. Constant 

values (Const) are set for the reference IDs of the columns in the hindcast_sheet containing the 

month (month_col), hour (hour_col), significant wave height (Hs_col), wave period (T_col) and wind 

speed (U_col). The column containing the key data in the ‘Ops Limits’ spreadsheet (ops_limits_ 

sheet) is also assigned a Const value (ops_lims_data_col). The user-defined type of operational 

limits for a WEC installation (in the data_sheet, see section 4.1.1) is stored in the variable install_ 

wndo_type. Information extracted from the relevant section in the ops_limits_sheet (identified by 

the install_header_row) is stored in the following variables: 

 params_considered 

 Hs_limit 

 U_limit 

 lower_max_Hs 

 upper_max_Hs 

 lower_T 

 upper_T 

 line_gradient  - calculated 

 line_y_intercept  - calculated 

7.11.1 Start 

As shown in Figure 7.2 (page 44), the start subroutine is called by maint_manager but only if the 

cost-benefit analysis (CBA) is enabled. This means that one or both of the Boolean variables 

CBA_retrieval or CBA_onsite must be set to True (see section 4.1.1). The start subroutine is used to 

read the information stored in the hindcast_sheet and calculate the estimated monthly revenue 

and wait times. 



 

Page 68 of 169 

 

The count_matches array, used to store the number of intervals in the dataset for each month, is 

first re-dimensioned (i.e. 1 to 12). The estimated_monthly_rev array is also re-dimensioned as this 

size in order to store a single value for each month. The estimated_months_install_wait array 

however, is created to be a 2-D array, with only the first dimension sized 1 to 12 (for each month). 

The second dimension of estimated_months_install_wait is sized as 1 to 16. Here, the first 8 entries 

correspond to the number of intervals in the required weather window where marine operations 

can be undertaken at night (i.e. night_ops_on, section 7.2.1). For example, if the resolution 

(time_step) of the model was 3 hours, then the second entry of the first month (i.e. referred to as 

estimated_months_install_wait(1,2)) is the number of intervals to wait for a 6 hour (2 x 3 hours) 

installation weather window in that month. The second set of 8 values in the second dimension 

(i.e. 9 to 16) store the number of intervals in the required weather window where marine 

operations cannot be undertaken at night (i.e. restricted to daylight hours only). The maximum of 8 

intervals in a row has been used in the model due to the likelihood that a resolution of three hours 

will be used (and the unlikelihood that a marine operation will take over three hours). 

Note: If the CBA is enabled, and if either the model resolution is increased (say to 1 hour time 

steps) or a marine operation may take over 24 hours, then the size of the second dimension of 

estimated_months_install_wait will need to be increased, and the code changed accordingly. 

The number of rows in the hindcast_sheet (num_rows) is calculated using the custom function 

num_rows (see section 7.1.11). In order to avoid complications later in the code, the name of the 

active sheet is stored in the variable sht_to_activate before the hindcast_sheet is selected, thereby 

allowing the original sheet to re-activated at the end of the procedure. The type of operational 

limits for WEC installation (install_wndo_type) is read from the relevant cell in the data_sheet. This 

information is used to find the reference ID of the row in ops_limits_sheet containing the header 

for that type (install_header_row). The value of params_considered and the relevant variables 

pertaining to the weather constraints (e.g. Hs_limit etc.) are obtained by reading from the 

ops_limits_sheet in exactly the same way as the weather.start procedure (see section 7.6.1). 

Also similarly to weather.start, the code then enters a for loop to consider each row in the 

hindcast_sheet. The values of this_month, this_hour, this_hs and this_T are read from the defined 

columns. The code only continues if the values of significant wave height (this_hs) and wave period 

(this_T) are numeric, using the in-built function IsNumber, thereby avoiding errors due to cells 

containing headers or NaN entries (Not a Number). The relevant entry in the count_matches array 

(i.e. count_matches (this_month)) is added to for each row. The values of Hs (this_hs) and T (this_T) 

are placed into ‘bins’ in order to correspond to the power matrix entries (see section 4.5) using the 

custom function rounded_val described in section 7.11.2. These ‘binned’ values are then sent to 

the get_power function in the revenue object (section 7.7.2) in order to find the corresponding 

value from the power matrix. This is divided by the value of wecs_per_matrix (sent to hindcast 

from revenue via maint_manager, see section 7.7.1) in order to calculate the hourly power 

(this_power) generated by the array (at 100% capacity). The relevant monthly entry in the 

estimated_monthly_rev array is updated by adding the revenue earned in that time step: 

        ( )                     (   )            (   )  
       (    ⁄ )

   
 

Where the tariff is obtained using the get_tariff function in the revenue object. A nested for loop 

then considers each of the entries in the estimated_months_install_wait array with the identifier 

num_intervals_wndo looping from 1 to 8 (i.e. considering half the entries because the first half is if 



 

Page 69 of 169 

 

night_ops_on = True, and the second half is daylight hours only). The Boolean function 

this_wndo_open (see section 7.11.3) identifies if the required length of weather window 

(num_intervals_wndo) is accessible given the installation weather conditions (install_wndo_type), 

assuming operations can be undertaken at night. If this_wndo_open is True (i.e. the window is 

accessible) then the relevant entry in the estimated_months_install_wait 2D array (i.e. estimated_ 

months_install_wait (this_month, num_intervals_wndo)) is updated (i.e. add 1). If the user-defined 

variable night_ops_on has been set to False then marine operations are constrained to daylight 

hours only, as described in section 7.6.3. In this case, the other half of the second dimension of the 

estimated_months_install_wait array (i.e. 9 to 16) is also updated (i.e. add 1). This is achieved by 

using the Boolean function this_daylight_wndo_open described in section 7.11.4. Note that the 

relevant entry of the array is identified using num_intervals_wndo plus 8 (i.e. estimated_months_ 

install_wait(this_month, num_intervals_wndo + 8)). The nested loop therefore fills the two arrays 

(estimated_monthly_rev and estimated_months_install_wait) with the summed values of revenue 

and the number of open weather windows respectively for each month. 

After every row in the hindcast_sheet has been assessed, a new for loop is entered where each 

month is considered in turn (i.e. i from 1 to 12). The average revenue for that month is calculated 

by dividing the relevant entry in estimated_monthly_rev by count_matches. The variable max_val is 

used to identify the last filled entry of the second dimension in estimated_months_install_wait. In 

other words, max_val is 8 if night_ops_on has been set to True because the remaining half of the 

array does not get completed if marine operations are not constrained by daylight hours (see 

previous paragraph). A nested for loop then considers each of these entries (i.e. up to max_val) 

using the identifier num_intervals_wndo. The relevant entry in the estimated_months_install_wait 

array is first changed to be the probability of the weather window being accessible (i.e. estimated_ 

months_install_wait(i, num_intervals_wndo) / count_matches(i)). If the entry is zero (i.e. there are 

no accessible windows of that length (num_intervals_wndo) in that month (i) then it is modified to 

give a very small probability (0.001 currently used). The following equation is then used to convert 

the probability of the window being open (Popen) into estimated wait times (in intervals), as detailed 

by Gray (2017): 

           
 

     
   

The subroutine ends by reactivating the original sheet (sht_to_activate). 

7.11.2 Rounded value 

The Double function rounded_val is called by start to convert the hindcast values of significant 

wave height and wave period into the binned values corresponding to the power matrix in the 

‘Power’ spreadsheet, as described in section 7.11.1. The function is sent the name of the 

parameter to round (this_type) as a String value containing either “Hs” (significant wave height) or 

“T” (wave period), as well as the numerical value (this_value). The reference ID of the row in the 

hindcast_sheet (i) is also sent to the function. An if-else condition is used to select the correct value 

of this_type. The Double variable temp_val is used to store updated values at each step of the 

‘binning’ process. First, this_val is divided by the size of the parameter step (i.e. in this example, 

0.5m for Hs and 2s for T). This is rounded up to the nearest integer (using RoundUp) and multiplied 

by the parameter step to place the temp_val at the upper end of the relevant ‘bin’. Half the 

parameter step is then subtracted in order to place temp_val at the centre of the ‘bin’ (e.g. temp_ 



 

Page 70 of 169 

 

val = temp_val – 0.25 for Hs). Upper and lower limits are also applied, along with error handling in 

the case of a negative value being identified. This method of ‘binning’ the values is exactly the 

same as seen when generating new time series’ using the Markov Chain Method, described in the 

‘Weather Simulation Report’ (WES, 2017a). The function name, rounded_val, is set to temp_val in 

order to be read by the calling procedure. 

Note: if the parameters steps in the power matrix are modified, then the generated time series’ 

of weather conditions must be changed accordingly, as must the code in hindcast.rounded_val 

7.11.3 This window open 

The Boolean function this_wndo_open is called by the start procedure (see section 7.11.1) in order 

to determine if a weather window of a certain number of intervals in length is accessible for 

installation of a WEC. It is sent the reference ID of the row of the assessed interval (this_row) and 

the required length of the weather window (this_num_ints). The return variable, temp_bool, is first 

initialised to True, saying that the weather window is open (i.e. accessible). A for loop then 

considers the weather conditions in each row of the required window (i.e. from this_row to 

this_row + this_num_ints -1) and uses the function int_wndo_open to ‘close’ the window (i.e. set 

the return value to False) if the conditions at any of the intervals are inaccessible. If the value of 

this_hs is a NaN (Not a Number) then the requested row must be beyond the last dataset entry and 

the function returns False. 

The function int_wndo_open is used to analyse the weather conditions of a particular row in the 

hindcast_sheet and determine if that interval is accessible for the marine operation defined in start 

(where the variables params_considered, Hs_limit etc. were read from the ops_limits_sheet, see 

section 7.11.1). The function follows exactly the same structure as the start procedure in the 

weather object (section 7.6.1), where the relevant weather constraints are assessed and the 

weather window is set to open (i.e. int_wndo_open = True) if accessible, or closed if not (i.e. 

int_wndo_open = False). 

7.11.4 This daylight window open 

The Boolean function is_daylight_wndo_open also interacts with the function int_wndo_open 

(described in section 7.11.3) in order to assess the accessibility of a weather window of a given 

length (this_num_ints) if operations are constrained to daylight hours only. As with the function 

this_wndo_open (section 7.11.3), the reference ID of the row in the hindcast_sheet is sent as 

this_row. Each row in the weather window is considered and the date values of this_month and 

this_hour are obtained. These variables are sent to the Boolean function is_daylight which utilises 

the daylight hours matrix (shown on the ‘Daylight’ input spreadsheet) for the user-defined site in 

exactly the same way as the weather object (see section 7.6.3). Again, the is_daylight function in 

the hindcast object needs to be modified if a site other than “North Scotland” is assessed. If it is not 

daylight then the weather window is closed. Otherwise, the function int_wndo_open (see section 

7.11.3) is used to close the weather window if the conditions are inaccessible. As before, the return 

value is set to False if the row under consideration goes beyond the last row of the dataset. 

 



 

Page 71 of 169 

 

7.11.5 Get functions 

The information calculated by the hindcast object can be accessed by other class modules by using 

the functions get_estimated_months_install_wait (with the arguments this_month and size_of_ 

window) and get_estimated_monthly_rev (with this_month). 

7.12 COST-BENEFIT ANALYSIS 

The cost_benefit_analysis object is utilised at every interval throughout each year of the simulated 

array lifetime during the determine_fix subroutine in maint_manager, as described in section 7.5.5. 

The object is only used if either (or both) of the user-defined options CBA_retrieval or CBA_onsite 

have been enabled (see section 7.2.4). The cost-benefit analysis (CBA) adds a significant amount of 

time onto the model simulations, which is why the object is only utilised if the user has specifically 

requested it. The flowchart in Figure 7.4 shows how the cost_benefit_analysis object is structured 

and provides a visual representation of its purpose and functionality. 

maint_manager
.determine_fix

If CBA_retrieval or 
CBA_onsite = True

cost_benefit_analysis
.start

cost_benefit_analysis
.create_full_list

cost_benefit_analysis
.order_this_list

full_list =

ordered_list =

For each WEC

wec(i) = array_object
.get_wec(i)

array_object
.count_wecs_offsitenum_wecs_not_onsite

For each WEC If the WEC is due 
maintenance

worth_retrieving_WEC

worth_repairing_WEC

For each WEC Get max severity

Get intervals offsite

wec
.get_wec_power

Get costs

functions
.get_ordered_array_2d

Store in array  

Figure 7.4. Structure of the cost-benefit analysis object 

 



 

Page 72 of 169 

 

Figure 7.4 shows how the object replicates each of the wec_object class modules in order to obtain 

information about each WEC in the array (stored in no_wecs) at every interval. These objects are 

stored using the variable wec(). The interval (in the year) when the CBA object is called is defined as 

this_interval, which then gets converted into an interval value independent of the year 

(current_interval_lng). The number of WECs not onsite (i.e. either in transit or at the O&M base) is 

stored in the variable num_wecs_not_onsite. 

7.12.1 Start 

The start subroutine is sent a number of variables as arguments by the calling procedure (maint_ 

manager.determine_fix). The date information is contained in the irun (i.e. current year) and 

this_interval (i.e. current interval in irun). The array_object class module is obtained so that it can 

be used by the CBA, as well as the total number of WECs in the wave energy array (num_wecs). The 

start subroutine is used to set cost_benefit_analysis up by assigning the object-based variables 

no_wecs and interval_now to be num_wecs and this_interval respectively. It also loops through 

each WEC in no_wecs (i.e. wec(i)) and stores the relevant class module using the get_wec function 

in the array_object (see section 7.13.14). The interval independent of the year (current_interval_ 

lng) is calculated using irun, this_interval and no_intervals (the number of intervals in a year). The 

variable num_wecs_not_onsite is defined using the count_wecs_offsite function in array_object 

(see section 7.13.3). 

7.12.2 Create full list 

The function create_full_list is used to compile an array containing the IDs of any WECs that have 

been set for repair. It is called by the determine_fix procedure in maint_manager (as shown by 

Figure 7.4, page 71) with the arguments irun (current year), vessel (the vessel_object class module), 

hindcast (the hindcast_object class module) and revenue (the revenue_object class module). 

Each WEC in the wave farm is considered in a for loop using the identifier i up to no_wecs. The WEC 

is only considered further if its state (obtained by using wec(i).get_state) is on_site (see the custom 

data type WEC_state in section 7.1). If the WEC is due to undergo scheduled maintenance then it is 

added to the full_list. This information is obtained using the function any_maint_ready in the wec_ 

object (see section 7.14.34). Otherwise, the list of failures on the WEC is stored in the fail_list 

variables by obtaining the wec_fail_list class module (with wec(i).get_fail_list) and using the 

function get_fail_arr_id (see section 7.16.3). If there are any failures (identified by checking that 

the first entry in fail_list is greater than zero) then the wec function any_fails_need_retrieval (see 

section 7.14.6) is used to identify if the action required to fix any of the faults listed in fail_list is 

“Retrieve WEC”. In this case, the WEC is added to the full_list if the CBA procedure worth_ 

retrieving_WEC (see section 7.12.3) returns True. If the WEC has suffered failures but none require 

the WEC to be retrieved, then the CBA function worth_repairing_WEC (see section 7.12.4) is used 

to determine if the device ID should be added to the full_list. Throughout the for loop, the variable 

num_in_list is used to keep track of the number of WECs that have been added to the full_list. If 

num_in_list is still zero at the end of the for loop, then the first entry in the full_list is given a 

nominal negative value (-5) to tell other procedures that no WECs have been set for repair. The 

function name, create_full_list, is set to be the full_list so it can be returned to the calling 

procedure, determine_fix. 

 



 

Page 73 of 169 

 

7.12.3 Worth retrieving WEC 

The Boolean function worth_retrieving_WEC is called by create_full_list (see section 7.12.2) in 

order to assess whether or not the WEC under consideration should be set for retrieval (to be 

repaired at the O&M base) at the current interval, or if it should be left onsite operating with one 

or more faults until it is next due to undergo scheduled maintenance. Figure 7.5 shows the 

structure and functionality of the worth_retrieving_WEC function in flowchart form. 

CBA.
create_full_list

wec.
any_fails_need_retrieval

CBA.
worth_retrieving_wec

If CBA_retrieval = True

wec.
get_power

wec.
get_max_severity

wec.
any_maint_due

RETRIEVE WEC

If wec_power = 0

If max_severity = major

If maintenance due

If none of the above 
conditions are met

wec.
get_total_parts_costs

wec.
get_total_other_costs

Get vessel cost

Calculate the time to 
the next maintenance 

task if repaired

Calculate the time to 
the next maintenance 

task if not repaired

If maintenance will be due 
immediately after this 

repair

If maintenance will be due 
within the user-defined 

CBA allowance days

revenue.
revenue_estimate

If income_if_repaired > revenue_if_left

RETRIEVE WEC

LEAVE WEC

If CBA_retrieval = False

Initialise as 
LEAVE WEC

 

Figure 7.5. Structure of the worth_retrieving_WEC function 

 



 

Page 74 of 169 

 

To carry out its operation, worth_retrieving_WEC is sent the variables irun (the current year) 

wec_id and fail_list (list of faults currently sustained by the WEC), as well as the class modules 

vessel, hindcast and revenue. A large number of variable names are used throughout the function, 

such as the return value temp_bool. These are discussed throughout this section where relevant. 

Note; where procedure names have been made clear in Figure 7.5, these are not discussed further 

in the following text. The procedures called from the wec_object class module are described in 

section 7.14. 

After the retrieval conditions have been assessed (e.g. wec_power = 0), the code calculates the 

parts_costs and other_costs for the faults listed in the fail_list. The vessel_cost is not obtained in as 

direct a manner as these costs. Instead, it is first initialised to zero before being updated by other 

procedures called throughout the remaining code. The wec function get_time_until_repaired (see 

section 7.14.29) calculates the number of intervals from the time the vessel is set for the retrieval 

operation until the WEC is ready to be installed following offsite repair (ints_not_onsite). It also 

updates the vessel_cost value with sum of the hires fees and fuel costs incurred for the retrieval 

operation. Using the calculated ints_not_onsite and the interval independent of the year (current_ 

interval_lng) as arguments, the revenue function get_month (see section 7.7.6) obtains the ID of 

the month where the WEC installation operation will be attempted (month_to_install). The length 

of the installation operation in intervals (length_install) is found using the wec function get_install_ 

time (see section 7.14.30). The vessel_cost value is again updated for the costs incurred during that 

marine operation. The hindcast function get_estimated_months_install_wait then obtains the 

number of intervals required to wait for an accessible weather window (given the installation 

weather constraints and length_install) using the hindcast weather dataset (see section 7.11) and 

stores it in the variable wait_time_install. The number of intervals the WEC is not onsite (ints_not_ 

onsite) is updated by adding the length_install and wait_time_install. Using this information, the 

wec function ints_to_next_maint then calculates the number of intervals until the next scheduled 

maintenance event if the WEC is repaired (ints_to_maint_after_repair) and if the WEC is left on site 

(ints_to_maint_if_left). 

If the number of intervals until the next scheduled maintenance event if the WEC is repaired 

(ints_to_maint_after_repair) is returned as -5, then the wec function ints_to_next_maint has 

identified that the event will be due immediately after the repair. In this case, the return value 

temp_ret is set to False, indicating that the retrieval operation should be delayed until the 

maintenance event is due. This also happens if the value of ints_to_maint_after_repair is less than 

or equal to the number of CBA allowance days (converted to intervals) specified by the user in the 

data_sheet (CBA_allowance_days, see section 4.1.1). 

If neither of the above conditions is met, then a cost-benefit analysis is undertaken to compare the 

revenue if the WEC is left at site (perhaps operating at reduced capacity) against the total income if 

the device is repaired (i.e. revenue at full capacity after repair minus repair costs). The estimated 

revenue is each case is obtained from the revenue function revenue_estimate (see section 7.7.6), 

which itself interacts with the hindcast object (section 7.11), using the appropriate interval values 

and wec_power. If the income_if_repaired is greater than the revenue_if_left then the return value 

temp_ret is set to True, thereby setting the WEC for retrieval. If CBA_retrieval is set to False (which 

must mean that the CBA only runs for onsite repairs), then the WEC is set to be retrieved as soon 

as possible in line with the default functionality of the model. The calling procedure (create_full_ 

list) is told of the decision by setting its name to temp_ret. 



 

Page 75 of 169 

 

7.12.4 Worth repairing WEC 

The function worth_repairing_WEC is called by create_full_list if none of the WEC’s sustained 

failures require the device to be retrieved for onsite repair (as shown in Figure 7.4). It is used to 

determine if the faults should be corrected (i.e. have certain parts replaced whilst the WEC is 

onsite) or if the WEC should remain onsite operating at reduced capacity. The structure and 

functionality of worth_repairing_WEC is almost identical to that of the function worth_retrieving_ 

WEC, discussed in detail in section 7.12.3 and shown visually in Figure 7.5 (page 73). One key 

difference is that all instances of CBA_retrieval are replaced by CBA_onsite. In addition, it is not 

necessary for the function to consider the estimated wait times (calculated by the hindcast object, 

section 7.11) because an installation operation is not due to be carried out. Instead, the relevant 

section of the wec function get_time_until_repaired is used, as shown in section 7.14.29, in order 

to calculate the number of intervals required to complete the offshore repairs.  

7.12.5 Order this list 

The function order_this_list is called by the determine_fix procedure in maint_manager, as 

described in section 7.5.5 and shown visually in Figure 7.4 (page 71). It is used to sort the list of 

WEC IDs determined during the cost-benefit analysis process in create_full_list (see section 7.12.2) 

into a particular order. The function is sent the list of WECs set for repair or maintenance (this_list) 

from the calling procedure, as well as the relevant class modules (vessel, revenue, hindcast). A 

number of new variables are used throughout the order_this_list function and are discussed 

throughout this section. 

The number of WECs in this_list is stored in the variable count_wecs. A Variant array, array_long, is 

re-sized as a 2-D array where the first dimension is from 1 to count_wecs and the second 

dimension is from 1 to the number of parameters used to order to the list (7 in the model 

example). If there is only one WEC in the list (i.e. count_wecs = 1) then the return value order_list 

(a 1D array) is set to equal this_list. If count_wecs is greater than 1 then each of the WECs in 

this_list (wec_id) is considered in turn (using the identifier i). The list of failures occurred on each 

WEC is stored in the variable fail_arr by using wec_fail_list (see section 7.16.3). The first four 

entries of the second dimension of the Variant array_long are then filled with the following 

information for each WEC (i.e. array_long(i, 1), array_long(i, 2) etc.): 

1. wec_id     - ID of the WEC (this_list(i)) 

2. major_failures (0 for True)  -wec(wec_id).major_failures(fail_arr) – section 7.14.28 

3. any_maint_ready (0 for True)  - wec(wec_id).any_maint_ready – section 7.14.34 

4. intermediate_failures (0 for True)  - wec(wec_id).intermediate_failures(fail_arr) – section 

7.14.28 

If the conditions are met (e.g. if the WEC has a major failure) then the relevant entry is given the 

value 0. Otherwise, it is given 1. This format is in place because the custom function get_ordered_ 

array_2d (see section 7.1.12) orders the array with the smallest values first. 

The last three entries (i.e. array_long(i, 5) to array_long(i, 7))  contain the values of the number of 

intervals the WEC requires offsite, the power capacity of the WEC (wec(wec_id).get_wec_power), 

and the total costs of repair (including vessel costs) respectively. If the WEC is either due to 

undergo maintenance or onsite repairs (i.e. replacing parts offshore), however, then these entries 

are filled with zeros. This is justified because the severity of the failures is enough information to 

sort WECs with onsite repairs only. If the WEC is to undergo a retrieval operation to repair failures 



 

Page 76 of 169 

 

then the total number of intervals the WEC will not be onsite (ints_not_onsite) is calculated in 

exactly the same way as seen in the worth_retrieving_WEC function (section 7.12.3). The process 

utilises functions in the objects wec, revenue, vessel and hindcast and also obtains the total 

vessel_cost incurred during both the retrieval and installation operations. The parts_costs and 

other_costs for the repairs are obtained from the wec object (see section 7.14.26).  

Once each WEC in this_list has been considered, the completed array_long variable is sent to the 

custom function get_ordered_array_2d (see section 7.1.12) to re-order the array in the following 

hierarchy. Note: this hierarchy can be modified by the user if required. 

1. Suffered major failure/s 

2. Due scheduled maintenance 

3. Suffered intermediate failure/s 

4. Fewest intervals not onsite 

5. Lowest power capacity 

6. Lowest total cost to repair 

The ordered version of array_long is stored in the variable sorted_array. The return variable 

order_list is re-sized to be a 1-dimensional array from 1 to count_wecs. For each WEC, the relevant 

value in order_list (i.e. order_list(i)) is filled with the WEC ID identified in the sorted_array (i.e. 

sorted_array(i, 1)). Finally, the function name order_this_list is set to be order_list so it can be 

recognised by the calling procedure determine_fix (section 7.5.5). 

7.13 ARRAY OBJECT 

The array_object class module is used to create, set up and control a new wec_object for each of 

the WECs in the wave energy array. It is known as array_object in the control object maint_ 

manager (see section 7.5.1) rather than array (as is the format for other class modules, e.g. 

revenue) in order to avoid confusion with a VBA array. The array_object also controls the 

functionality of the model for failures and maintenance events that are related to the entire wave 

energy array. These categories are identified on the ‘Inputs’ spreadsheet by having the relevance 

entry set to “Array”, as described in sections 4.1, 7.3 and 7.4.  

The variables defined for use throughout the object are as follows: 

 state  - the current state of the array (data type array_state, section 7.1.1) 

 wec()  - a class module wec_object for each WEC (section 7.14) 

 num_wecs  - the total number of WECs in the array 

 array_fail_arr - the class module array_fail_list (section 7.16.1) 

 array_output_arr - the class module array_output_list (section 7.17) 

 array_power - power capacity of the array (between 0 and 1) 

 repair_intervals  - the number of intervals remaining to complete array repairs 

 technicians - the class module technicians_object (section 7.15) 

 array_maint_id - the ID of the array-based scheduled maintenance event 

 array_maint_due – identifier of when array-based maintenance is due 

 array_maint_checker() - identifier of when array-based maintenance is done in each year 

 onsite_vessel_id_in_use – ID of the vessel being used for array repairs or maintenance 

 delay_status - String identifier of the cause of delays to work, if any 



 

Page 77 of 169 

 

7.13.1 Start 

The start subroutine in the array_object class module is called during the setup_class key 

procedure via maint_manager, as shown in Figure 7.2 (page 44). It is used to set up the array-based 

aspects of the model, as well as create each of the wec objects. The calling procedure sends start 

the user-defined total number of WECs in the array (no_total_wecs), as well as the objects vessel 

and parts for use in the function. 

The objects controlling failure and output information (array_fail_arr, section 7.16.1 and array_ 

output_arr, section 7.17 respectively) are created and setup by calling their start procedures. The 

variable num_wecs is assigned to the argument no_total_wecs sent by maint_manager.start. The 

array is initialised by setting the array_power to 1 (i.e. full capacity), state to operating, 

onsite_vessel_id_in_use to zero (i.e. no vessel in use), and delay_status to “none”. The value of 

array_maint_due is also initialised to equal zero, indicating that no array-based scheduled 

maintenance is due, unless set. This uses the assumption that OPEX calculations only start once all 

the WECs are installed at site in the first instance. A for loop then considers each of the WECs in 

turn, starting at 0 (wec(0) is only used for access to procedures) up to num_wecs with the identifier 

i. The start subroutine in each New wec_object is called (see section 7.14.1) with the arguments i 

(the ID of WEC), vessel (vessel_object()), num_wecs and parts (parts_object). The technicians object 

is also initialised here by calling its start procedure (section 7.15.1). 

The model is currently only coded to allow one array-based scheduled maintenance event to be 

defined (i.e. “Moorings inspection”, see section 4.1.3), although this can be modified by the user if 

required by following the same structure as seen throughout the wec object (section 7.14). After 

the array has been initialised and the relevant objects have been set up in start, the function then 

identified the ID of the array-based scheduled maintenance event (if there is one) defined in the 

data_sheet. To achieve this, a for loop considers each of the listed maintenance events using 

maint_param_list.get_no_maint (section 7.4) and identifies when the relevance (get_relevance) is 

for the “Array”. If an array-based maintenance event is found then the variable array_maint_id is 

set to be that ID, and the counter (count) is updated. If the count value is still zero after each 

maintenance event in the data_ sheet has been considered, then array_maint_id is set to zero. If 

count is greater than 1 then an error message is displayed explaining that more than one array-

based event has not been coded for and prompts the user to exit the program (terminate_ 

program, section 7.1.8). If count is 1, then the staggered maintenance entry in the data_sheet (see 

section 4.1.3) must be set to “N/A” or an error message will be displayed. The variable array_ 

maint_checker is re-sized to contain an Integer value for each year of the project lifetime (no_run). 

Each entry is first initialised in a for loop to contain 1, saying that the array-based maintenance 

event has already been undertaken in every year. The for loop is then repeated for every year 

(from 1 up to no_run) with the Step being taken as the user-defined get_interval_years entry for 

that category (see section 4.1.3). In each of the selected years, the relevant entry in array_maint_ 

checker (i.e. array_maint_checker(i), where i is the year identifier) is changed to contain 0, 

indicating that the event is yet to take place in that year. 

7.13.2 Determine failure 

The determine_failure subroutine in the array_object is called by maint_manager at every interval 

in order to simulate the occurrence of array-based faults and call the same procedure in every wec 

object. It is sent date information in the form irun (the current year) and this_interval (the current 



 

Page 78 of 169 

 

interval in irun). Every fault category listed in the data_sheet (section 4.1.2) is considered in a for 

loop with the identifier ifail, where the total number of categories is obtained using the function 

get_no_fail in the fail_param_list object (section 7.3). The in-built function With is used to call 

various functions from the fail_param_list object without having to repeat fail_param_list.get_fail_ 

param(ifail) on every line, thus making the code clearer to read.  

If the relevance (.get_relevance) of the fault category under consideration is “Array”, then the 

Monte Carlo analysis of simulating faults is only undertaken if the array is neither undergoing 

repair nor maintenance (i.e. if state = operating). A random number between 0 and 1 is assigned to 

the variable rand using the in-built function Rnd. If rand is greater than the probability of failure per 

interval for the array-based fault category (.get_percent) then the failure is simulated. The 

subroutine add_array_fail is used to update the array_fail_arr object (containing a list of current 

array failures) by calling add_fail (see section 7.16.1) with the failure category ID (ifail = fail_cat) as 

the argument. In addition, the failures output object (fail_output_list) is told of the failure by 

calling set_total_occurrence (see section 7.25.2) with ifail as the argument, thereby updating the 

output table of fault categories on the results_sheet (see section 6.1). 

If the relevance (.get_relevance) of the fault category is “WEC”, then the determine_failure 

subroutine in every wec object (see section 7.14.2) is called in order to run the Monte Carlo 

analysis of simulating failures on each device in the wave energy array. If .get_relevance does not 

match either “Array” or “WEC” then an error message is displayed and the user is prompted to exit 

the program (functions.terminate_program). 

7.13.3 Determine fix 

The determine_fix subroutine in the array_object is called by maint_manager at every interval of 

the year (see section 7.5.5) in order to identify times when any scheduled maintenance event is 

due (both array-based and WEC-based). It is sent the date information irun (current year) and 

this_interval (current interval in irun) by the calling procedure.  

A for loop considers each of the maintenance events listed in the data_sheet using the function 

get_no_maint via the maint_param_list object (section 7.4) with the identifier i. The function 

get_maint_interval_in_year (see section 7.14.32) in the zero wec object (i.e. wec(0)) is used to 

obtain the interval in the year when the maintenance category (i) is due, based on the season 

defined in the data_sheet (see section 4.1.3). Although the function is located in the wec object, it 

is independent of the rest of the object’s functionality. In other words, get_maint_interval_in_year 

converts a ‘season’ entry into an ‘interval’, regardless of whether that maintenance event is array-

based or wec-based. The obtained interval is stored in the variable maint_due_interval. 

If the action required to undertaken that maintenance event (i.e. maint_param_list.get_maint_ 

param(i).get_action_reqd, see section 7.4) is “Retrieve WEC” then the task is WEC-based. The 

number of WEC-based maintenance categories (count) is updated before the current interval 

(this_interval) is checked against the value of maint_due_interval. If the current interval is greater 

than or equal to the ‘due’ interval, then a nested for loop considers each WEC in the project, using 

the identifier k. The procedure set_maint_due (see section 7.14.3) in the relevant wec object (i.e. 

wec(k)) is then called in order to carry out the scheduled maintenance task (i) on that WEC as soon 

as possible. However, the user-defined number of WECs allowed at the O&M base purely for 

maintenance (max_wecs_offsite_maint , see section 4.1.1) is used as an additional constraint here. 

The constraint is only utilised if the WEC is onsite (i.e. if wec(k).get_state = on_site) due to the 



 

Page 79 of 169 

 

interaction with the cost-benefit analysis (refer to section 7.12). If the wec function get_maint_due 

(section 7.14.36) identifies that the maintenance task (using count as the argument, see section 

7.14.3 for further information) is due then the function count_wecs_offsite is used the count the 

number of WECs that are not onsite (i.e. in transit or at the O&M base). If the value returned by 

count_wecs_offsite is less than max_wecs_offsite_maint (i.e. if there is enough space at the O&M 

base for the WEC) then the WEC is ready to undergo the maintenance. This is defined by sending 

the wec function define_set_for_maint (section 7.14.3) the String argument “Yes”. Otherwise, it is 

sent “No”, thereby restricting the WEC’s maintenance until enough space is available at the O&M 

base. 

If the action_reqd (see section 7.4) to undergo the maintenance task is not “Retrieve WEC”, then 

the ID of the array-based maintenance category (array_maint_id, see section 7.13.1) is check 

against the current category under consideration (i). If these two values match, and if the relevant 

entry in array_maint_checker for the current year (i.e. array_maint_checker(irun)) is zero (i.e. 

array-based maintenance has not been undertaken already that year), and if current interval is 

beyond the maint_due_interval,  then the value for array_maint_due is changed to 1, identifying 

that array-based maintenance is due as soon as possible. If the maintenance category is not 

recognised by either of the two conditions then an error message is displayed, prompting the user 

to end the program. 

7.13.4 Attempt fix 

The attempt_fix subroutine in the array_object is called by determine_actual_fix in maint_ 

manager, as described in section 7.5.6. It is used to simulate the repairs and maintenance tasks 

undertaken on the array, as well as controlling the tasks carried out on each WEC. The calling 

procedure sends attempt_fix the date variables irun and this_interval, as well as the class modules 

weather, vessel, parts and delays. It is also sent the ordered_list of WEC IDs. This is either the list 

returned by the cost-benefit analysis (see section 7.12.5) or just the full list of WECs in ascending 

order. The following variables are used throughout the attempt_fix function: 

 i, j    - identifiers 

 fail_arr()   - used to store the list of array-based failures 

 fuel_hours   - length of the marine operation (in hours) 

 wndo_length  - length of the required weather window (in hours) 

 ops_lim_type  - type of operational limits required 

 this_tech   - technician identifier 

 delayed_by_techs  – Boolean identifier of delays due to lack of technicians 

 num_contractors_needed – number of external contractors needed 

 perm_techs_to_assign  – number of permanent staff to assign to task 

 actions_array  - list of actions required to repair array-based faults 

 this_action  - identifier of action required 

 vessel_name_reqd - name of vessel required for task 

 vessel_id_to_use  - ID of vessel used for current array-based task 

The flowchart shown in Figure 7.6 provides visual representation of the structure, functionality and 

key procedures called throughout the attempt_fix function in array_object. The sources of 

information (i.e. the called objects and procedures) which have not been made clear in Figure 7.6 

are described in the subsequent text. 



 

Page 80 of 169 

 

array_object.
attempt_fix

fail_arr =

array_fail_arr.
get_fail_arr_id

If the array is operating 
AND has sustained failures

actions_array =

wec(0).
ret_actions_reqd

For each this_action vessel_name_reqd =

wec(0).
vessel_for_action

vessel_id_to_use =

wec(0).
ret_vessel_id_to_use

If a vessel is available calculate fuel_hours calculate wndo_length

ops_lim_type =

wec(0).
calmest_lims_for_op

if wec(0).
full_wndo_open = True check technicians

wec(0).
num_onsite_techs_reqd

If work is not delayed 
by lack of technicians

vessel(vessel_id_to_use).
mobilise_boat

Assign technicians 
and contractors technicians.

add_contractor_fees

technicians.
add_tech_working

state = being_repaired

set repair_intervals

array_power = 0

vessel(vessel_id_to_use).
add_op_costs

wec(0).
assign_vessel_costs_outputupdate vessel output

If there are WECs in the 
ordered_list

For each WEC

wec(ordered_list(i)).
attempt_fix

Array maintenance

update_array_power
 

Figure 7.6. Structure of the attempt_fix subroutine in array_object 

The structure of attempt_fix has three main sections, indicating the hierarchy of tasks: 

1. Array-based failures 

2. WEC-based failures and maintenance (see section 7.14.4) 

3. Array-based maintenance 



 

Page 81 of 169 

 

The list of array-based failures that have been suffered since the last repair (fail_arr) is obtained 

from the array_fail_arr object (see section 7.16). If no array-based failures have been sustained 

then the first and only entry of fail_list will be -5. The zero entry of the wec objects is only used to 

utilise its procedures, such as ret_actions_reqd (section 7.14.21), vessel_for_action (section 

7.14.23) and ret_vessel_id_to_use (section 7.14.24). Although only one action is required to correct 

array-based failures (i.e. “moorings/subsea work”), the code loops for each this_action in order to 

follow the same format as attempt_fix in the wec object (see section 7.14.4) and provide the 

framework for future code modifications. An available vessel is identified if vessel_id_to_use is 

greater than zero (see section 7.14.24). The function get_offshore_hours_subsea (section 7.13.6) is 

used in conjunction with the get_free_travel_time value obtained from the vessel object (section 

7.8) in order calculate the number of hours it takes to complete the marine operation (fuel_hours). 

This is rounded up to the nearest time_step to find the length of the required weather window in 

hours (wndo_length). The type of operational limit of weather conditions (ops_lim_type) is 

calculated using the wec function calmest_lims_for_op (see section 7.14.8). The accessibility of the 

weather window is assessed by calling the wec function full_wndo_open (section 7.14.11) with the 

relevant arguments (e.g. wndo_length, ops_lim_type etc.). The user-defined selection on whether 

or not external contractors can be hired to assist with maintenance is then considered (short_ 

term_contracts_enabled, see sections 4.3 & 7.15.1). If contractors cannot be hired, then the work 

is delayed (i.e. delayed_by_techs = True) if the number of available technicians (technicians.get_ 

num_techs_avail, section 7.15) is less that the number of technicians required for the operation 

(wec(0).num_onsite_techs_reqd, section 7.14.5).If the work is to go ahead, then the correct vessel 

is mobilised (vessel(vessel_id_to_use).mobilise_boat, section 7.8.4) and technicians are assigned to 

the task (technicians.add_tech_working, section 7.15.2). Assigning technicians also involves 

identifying the number of contractors required (num_contractors_needed), if any, and adding their 

fees to the output object (technicians.add_contractor_fees, section 7.15.3). Whilst the array is 

being_repaired, it is completely shut down to reduce risk during the offshore operation (i.e. array_ 

power = 0). The number of intervals required to complete the repair/s (repair_intervals) is set to 

the number of hours (wndo_length) divided by the model resolution (time_step). The final steps in 

simulating the start of the array repairs include setting the vessel costs (vessel(vessel_id_to_ 

use).add_op_costs, section 7.8.8) and assigning them to the failures (wec(0).assign_vessel_costs_ 

output, section 7.14.12), before clarifying that the work has not been delayed (i.e. delay_status = 

"none"). If the work has been delayed by either a lack of technicians (“techs”), adverse weather 

conditions (“weather”), or lack of an available vessel (“vessel”) then the delays object is updated by 

calling its add_this_delay subroutine (section 7.10.2) and setting the delay_status accordingly. 

Following the array-based failures assessment, the code moves onto calling the attempt_fix 

subroutine in each of the wec objects defined in the ordered_list (see section 7.5.5). This is 

explained in more detail in section 7.14.4, but follows a somewhat similar structure to Figure 7.6. 

The subroutine then moves onto assessing array-based maintenance, with the category ID (array_ 

maint_id) identified during the start procedure (section 7.13.1). If a maintenance event has been 

defined for the array (i.e. if array_maint_id > 0), then it is simulated in a very similar way to array-

based failures, as shown in Figure 7.6 and described in the previous paragraphs. The key difference 

is that a list of the actions_reqd does not need to be obtained because aspects of the task, such as 

get_vessel_reqd and get_hours_offshore, can be identified directly from the maintenance 

parameter object (i.e. maint_param_list.get_maint_param(array_maint_id), section 7.4). The task 

is only carried out if array_maint_due, defined during determine_fix (section 7.13.3), is set to 1. 



 

Page 82 of 169 

 

The array power is then updated using the subroutine update_array_power (see section 7.13.5). 

7.13.5 Update array power 

The subroutine update_array_power is called by two procedures in array_object – attempt_fix 

(section 7.13.4) and next_interval (section 7.13.7) – in order to update the value of array_power. 

This procedure is required due to the fast that the model can involve array-based failures, 

maintenance and marine operations, as well as WEC-based aspects. In order words, the total 

power output of the entire array (i.e. the revenue-generating power) will not necessarily be equal 

to the sum of the power output of all the WECs in the project if there are array-based aspects 

involved. 

In update_array_power, the array_power is set to zero if any array-based repairs or maintenance 

tasks are taking place (i.e. if state = being_repaired). Otherwise, the array_power is initialised to 

equal the sum of the WECs power using the function sum_wecs_power (see next paragraph). The 

list of array-based failures is then stored in the variable fail_arr by using the array failure object 

(array_fail_arr, section 7.16.1). If there are any failures, then each one is considered in a for loop 

and the power loss is subtracted from array_power at each step. If the value of array_power is 

negative at the end of this loop, then it is set to zero (i.e. can never have negative power output). 

The function sum_wecs_power is used to calculate the total power output from all the WECs in the 

wave energy array. The return value, temp_sum, is initialised to zero. Each wec object is then 

considered in a for loop with the identifier i. The power output in the wec object is a value between 

0 and 1, relating the capacity of that WEC. Therefore, this value (obtained using wec(i).get_wec_ 

power) must be divided by the number of WECs in the array (num_wecs) in order to convert it in 

array-based power (between 0 and 1). Each converted wec_power is added to the temp_sum 

throughout the for loop. The use of the Double data type can cause problems for the VBA code 

where there are very small rounding errors. This is remedied by assigning temp_sum the value of 1 

or 0 if the obtained value is within 10x10-10 of that figure. The function name, sum_wecs_power, is 

set to be temp_sum in order to be recognised by the calling function update_array_power. 

7.13.6 Hours offshore for subsea work 

The function get_offshore_hours_subsea is called by the attempt_fix subroutine (also in array_ 

object, section 7.13.4) in order to update the number of hours is takes to completely repair an 

array-based failure/s. It is sent the list of array-based failures currently sustained (fail_arr), the 

number of transit hours required by the selected vessel (transit_hours), and the weather object.  

Firstly, the return value temp_hours is initialised to be zero. This function is only called if array-

based failures have been sustained, but the condition is checked (i.e. if fail_arr(1) > 0) anyway for 

completion. A for loop considers each entry in the fail_list with the identifier i. For the first failure, 

temp_hours is set to be the value of the get_hours_offshore function obtained from the failure 

parameters object (fail_param_list.get_fail_param(fail_arr(i))). If multiple failures have occurred, 

then it is assumed that each one will not take more than three hours, in addition to the first repair. 

This assumption is based on the idea that multiple failures can be repaired in parallel, or at least 

planned so that total time spent offshore is minimised. After each failure has been considered, 

temp_hours is updated to include the transit_time, thereby becoming the total number of hours 

required for the full marine operation. If marine operations are constrained to daylight hours (i.e. if 

night_ops_on = False) then it is possible that certain array-based failures could take longer to repair 



 

Page 83 of 169 

 

than is possible given these restrictions. This aspect should be considered when defining the failure 

categories (section 4.1.2) but is incorporated into this function by modifying temp_hours if it is 

greater than the longest period of daylight throughout the year for the specified site. This period is 

identified by using the weather function longest_daylight_wndo (see section 7.6.5). The check is 

undertaken by converting the temp_hours value into intervals (i.e. dividing by time_step). The 

get_offshore_hours_subsea is set to be temp_hours to be returned to attempt_fix. 

7.13.7 Next interval 

The subroutine next_interval is called by the procedure of the same name in the maint_manager 

class module, as described in section 7.5.8. It is used to set the array up for the next interval in the 

simulation, as well as calling the next_interval subroutine for each wec object (section 7.14.14). It is 

sent the date information by maint_manager in the form irun (current year) and this_interval 

(current interval in irun). It is also sent the names of the relevant objects weather, vessel, revenue, 

parts and delays so their procedures can be accessed, as well as the total number of WECs in the 

array (num_wecs). 

Initially, the lost revenue caused by any failures or maintenance task throughout the array 

(including on WECs) is assigned for producing the outputs tables seen in the results_sheet (see 

section 6.1). This is achieved by calling the function assign_lost_revenue_fails_maint, which is 

described in detail in section 7.13.8. 

If the array is undergoing repairs or maintenance (i.e. if state = being_repaired) then the simulation 

is set up for the next interval by subtracting 1 from the number of intervals remaining to complete 

the task (repair_intervals) 

Permanently employed technicians who have completed their current repairs or maintenance tasks 

are reset by calling the next_interval subroutine in the technicians object (see section 7.15.4). The 

subroutine next_interval in each of the vessel objects (section 7.8.4) is also called to update the 

number of intervals each vessel has remaining on a marine operation. 

The list of array-based failures is stored in the variable fail_arr using the array_fail_arr object 

(section 7.16.1). If the array is being_repaired and if there are no more intervals remaining on the 

task (i.e. if repair_intervals <= 0) then the output information is updated. For array failures, this 

involves checking each action required (this_action) and demobilising the vessel used for the 

operation (onsite_vessel_id_in_use, set by attempt_fix) by calling vessel.demobilise_boat (see 

section 7.8.5). The output information for the array is updated by calling the fail_costs procedure in 

the array_output_arr object (section 7.17.2), whilst the table of failure categories is updated with 

set_costs_repair in fail_output_list (section 7.25.2). The object controlling current array-based 

failures, array_fail_arr, is reset by calling its start subroutine (see section 7.16.1). A similar process 

is undertaken when array-based maintenance is the task that has just been completed. This is 

identified when the state is being_repaired but there are no array-based failures (i.e. fail_arr(1) is 

not greater than 0). The correct vessel is demobilised in the same way as the failures section. The 

output information is updated by calling the subroutines add_maint_ costs (section 7.17.2) and 

set_costs_maint (section 7.26.2) in the objects array_output_arr and maint_output_list 

respectively. In addition, the relevant entry in the array maintenance checker (i.e. array_maint_ 

checker(irun)) is set to 1, saying that maintenance has been completed in that year, whilst the value 

of array_maint_due is reset to zero. Once the output information has been updated following a 

successful marine operation, the array state is reset to operating. 



 

Page 84 of 169 

 

The subroutine next_interval is then called for each wec object in order to set the WECs up for the 

next interval and assigned output information if required. This is described in greater detail in 

section 7.14.14.  

The array power is updated for completion by calling the procedure update_array_power, 

described in section 7.13.5. This leads on to the availability of the array being updated for the 

model outputs by calling avail_add in the array_output_arr object (section 7.17.3). The revenue 

generated by the array at that interval is also updated for the outputs by calling update_rev in the 

revenue class module (section 7.7.4). 

7.13.8 Assign lost revenue for failures and maintenance 

The subroutine assign_lost_revenue_fails_maint is called at the beginning of the next_interval 

procedure, also in the array_object (section 7.13.7), in order to assign shares of the total lost 

revenue at each interval to the relevant failure categories and maintenance tasks. It is sent the 

current year (irun) and current interval (this_interval), as well as the revenue object. Assign lost 

revenue means that the costs of improving certain components or O&M strategies can be justified. 

In other words, the user can identify how much money they should spend on improving a particular 

component in order to see economics benefits in future wave energy arrays. This is much more 

applicable to the components on each WEC, rather than array-based failures. Therefore, the 

subroutine gives WEC-based failure categories priority when assigning lost revenue. This hierarchy 

of assigning lost revenue is contained within the structure of assign_lost_revenue_fails_maint, as 

shown in Figure 7.7. 

Revenue is only lost if the array is not operating at full capacity (i.e. if array_power < 1). Initially, 

the total power loss incurred from all the WECs in the array is calculated by looping through each 

wec object and adding the WEC power loss (converted to array power loss, i.e. (1 - wec(i).get_wec_ 

power) / num_wecs) to the Double variable sum_wecs_power_loss. As with the sum_wecs_power 

function (see section 7.13.5), the final value of sum_wecs_power_loss must be adjusted for 

rounded errors. The total share of lost revenue assigned to the WECs (wecs_share) is set to 1 if 

sum_wecs_power_loss is equal to (or greater than) the array power loss (i.e. 1 - array_power). 

Otherwise, the wecs_share is set to be the portion that sum_wecs_power_loss has on the array 

power loss, with array_share accounting for the remaining lost revenue (i.e. 1 - wecs_share). Four 

key variables are initialised to zero before the subroutine’s main processes are undertaken; 

fails_count (the number of fault categories to assign), maint_count (the number of scheduled 

maintenance events to assign), fails_share (portion to be assigned to the failures), and maint_share 

(portion to be assigned to the maintenance events). 

The subroutine’s purpose is achieved by checking every failure and maintenance category that has 

had any impact on overall array power loss and assigning each one its appropriate share of the 

associated lost revenue. This information is stored in VBA array variables named fails_store_array 

and maint_store_array. Each one is a two-dimensional array storing three pieces of information 

about each task:  

1. The ID of the category  - e.g. fail_arr(ifail) 

2. The share of lost revenue - e.g. calculated with calc_fail_share (section 7.13.11) 

3. The state and delay status - e.g. “onsite” & wec(i).get_delay_status (section 7.14.36) 

 



 

Page 85 of 169 

 

assign_lost_revenue_fails_maint

If array_power < 1

sum_wecs_power_loss = sum for each wec

1- wec.
get_wec_power / num_wecs

Adjust for rounding errors

For each WEC

If there is WEC power loss Identify this WECs share of 
total power loss

If WEC is under_repair Find the action that is being undertaken

Create list of its failures with that action

fails_power_loss

For each failure Fill share array
calc_fail_share

If WEC is on_site

fails_power_loss

Fill share array
calc_fail_share

For each failure

If WEC is off_site or 
in_transit

Fill fail share array only if maintenance is 
not being done

Fill maint share array only if only 
maintenance is being done

If both failures and 
maintenance are being done

Priority:assign to failures

Assign rest to maintenanceIf array aspects 
require a share

Calculate remaining_power_loss

If there are no array-based failures

If there are array-based failures

Assign to maintenance

Assign to failures

fail_output_list.
next_interval

maint_output_list.
next_interval  

Figure 7.7. Structure of assign_lost_revenue_fails_maint 

 



 

Page 86 of 169 

 

As shown in Figure 7.7, assign_lost_revenue_fails_maint then enters a for loop where each WEC in 

the array is considered (using the identifier i). The WEC’s failures and/or maintenance categories 

are only assigned lost revenue if there is any loss of wec_power (i.e. if wec(i).get_wec_power < 1). 

The portion of total power loss from all WECs attributed to the WEC under consideration is stored 

in the variable this_wecs_portion. The list of failures sustained by the WEC (fail_arr) is obtained 

from the failures object related to the wec class module (i.e. wec(i).get_fail_list.get_fail_arr_id). 

If the WEC is undergoing on site repairs (i.e. if wec(i).get_state = under_repair) then the action that 

has taken priority must be identified. This assumes that only one set of onsite repairs (e.g. 

replacing a PTO unit) can be done at a time, as described in greater detail in the wec subroutine 

attempt_fix (see section 7.14.4). The current action (this_action) is identified using the wec 

functions ret_actions_reqd and ret_action_onsite_priority (see sections 7.14.21 and 7.14.22 

respectively). The list of failures (fail_arr) is then modified (and renamed as new_fail_arr) in order 

to identify all the failures requiring this_action using the wec function ret_action_fails (section 

7.14.25). The power loss incurred by these failures is stored in the variable power_loss_from_ 

these_fails using the function fails_power_loss (section 7.13.9). Each of the fault categories listed in 

new_fail_arr are considered in turn in a for loop using the identifier ifail. In order to re-size the 

fails_store_array, the value of fails_count is added to for each category. As stated previously, the 

fails_store_array is a 2D array with three entries for each fault category. The first entry (i.e. fails_ 

store_array(1, fails_count)) stores the ID of the category (i.e. new_fail_arr(ifail)). The second entry 

(i.e. fails_ store_array(2, fails_count)) stores the share of overall lost revenue to be assigned to that 

category, obtained by the calc_fail_share function (section 7.13.11). The third and final entry (i.e. 

fails_ store_array(3, fails_count)) stores String information about the status of the failure (“onsite 

repair” in this case). 

If the WEC is on site but not undergoing a repair (i.e. ElseIf wec(i).get_state = on_site) then the 

power loss from the failures (fail_arr) is obtained from fails_power_loss (section 7.13.9). Then a for 

loop considers each failure in turn and fills the fails_store_array appropriately, as described above. 

The third entry of the array (i.e. fails_store_array(3, fails_count)) stores the delay_status, as well as 

the String information “onsite”. 

If the WEC is either offsite or in transit, however, then the lost revenue might be due to 

maintenance tasks as well as failures. The scenario where the lost revenue is solely due to failures 

is identified using the condition if wec(i).any_maint_due = False (see section 7.14.34). The WEC is 

only in this state due to failure categories that need retrieval. Therefore, the function fails_power_ 

loss_retrieve (section 7.13.10) is used to calculate the value of power_loss_from_these_fails. The 

for loop adds information about each failure to fails_store_array as before, but only if the action 

for that failure (i.e. fail_param_list.get_fail_param(fail_arr(ifail)).get_action_reqd) is “Retrieve 

WEC”. The calc_fail_share function (section 7.13.11) is again used to assign the failure for each 

failure, with the appropriate parameters as arguments (such as wec(i).num_retrieval_fails, section 

7.14.33). If the status of the WEC is “in transit” then the work is not delayed. However, if the WEC 

is “offsite” then installation could be delayed, meaning the third entry of fails_store_array should 

also contain the delay_status. If the WEC is undergoing maintenance only (i.e. no failures and 

wec(i).any_maint_ready = True) then each scheduled maintenance category requiring the action 

“Retrieve WEC” is considered in a for loop. The maint_store_array is filled in the same way as 

fails_store_array, with the key difference being that the function calc_fail_share is not used to fill 

the second entry. Instead, the share of lost revenue attributed to that maintenance is event is 

calculated by the equation: 



 

Page 87 of 169 

 

            (      )       
                 

                                
            

Where the number of maintenance events due is obtained by the wec function get_num_wec_ 

maints_due (section 7.14.34). If the state of the WEC (off_site, being_removed or being_installed) 

is not due solely to either failures or maintenance, then it is a combination of both. In this case, 

each one must be assigned a share of the total power loss (i.e. full power loss because the WEC is 

offsite). These shares are stored in the variables fails_share and maint_share. The fails_share is 

assigned based on the power loss caused by those failures (power_loss_from_these_fails), whilst 

the maint_share is calculated based on the fact that maintenance causes full power loss (i.e. the 

WEC to go offsite).  

Note: this assumption means that no scheduled maintenance is carried out whilst the WEC in 

offshore – a justified assumption based on WEC developer experience. 

The share arrays (fails_store_array and maint_store_array) are filled in a similar way as described 

previously, with the only difference being that the assigned share (i.e. the second entry) 

incorporates the relevant multiplier (fails_share and maint_share respectively). This completes the 

WEC-section of the subroutine assign_lost_revenue_fails_maint. 

If the share of lost revenue attributed to the array (array_share) was not identified as zero then the 

remaining_power_loss to be assigned is calculated (i.e. (1 - array_power) - sum_wecs_power_loss). 

The variable fail_arr is reset to contain to list of array-based failures. If user has defined an array-

based scheduled maintenance event (i.e. subsea moorings inspection, see section 7.13.4) and it is 

being undertaken, then the maint_store_array is updated to contain the relevant information. The 

full array_share of lost revenue is assigned to the event. However, if array-based failures have 

occurred then the fails_store_array is updated in the same manner as described previously, using 

the functions fails_power_loss (section 7.13.9) and calc_fail_share (section 7.13.11).  

Following the described processes, the relevant output objects are updated. This only occurs if 

there have been failures and/or maintenance categories stored in the variables fails_store_array 

and maint_store_array, identified if fails_count and/or maint_count respectively are greater than 

zero. In each case, the outputs objects fail_output_list and maint_output_list keep track of the lost 

revenue details with their next_interval functions (see sections 7.25.3 and 7.26.3 respectively) 

7.13.9 Power loss from failures 

The fails_power_loss function is utilised by the assign_lost_revenue_fails_maint subroutine in the 

array_object class module, as described in section 7.13.7. It takes a list of failures (fail_arr) and 

calculates the sum of the power loss on the entire array caused by each one. To achieve this, the 

function obtains the power loss for each failures defined on the data_sheet (section 4.1.2) using 

get_power in the relevant object (i.e. fail_param_list.get_fail_param(fail_arr(i)).get_power, section 

7.3). 

7.13.10 Power loss from failures that need retrieval 

The fails_power_loss_retrieve function is also utilised by the assign_lost_revenue_fails_maint 

subroutine in the array_object class module (section 7.13.7). It operates in exactly the same way as 

fails_power_loss (section 7.13.10) but only adds the power loss from a failure to the return value if 



 

Page 88 of 169 

 

the action required for that failure is “Retrieve WEC” (i.e. fail_param_list.get_fail_param(fail_ 

arr(i)).get_action_reqd, section 7.3 

7.13.11 Calculate failures share 

The calc_fail_share Double function is utilised by the assign_lost_revenue_fails_maint subroutine 

in the array_object class module, as described in section 7.13.7. It is used to calculate the share of 

lost revenue to be assigned to a particular failure. To achieve this, it is sent the following 

arguments: 

 num_fails   - the total number of failures to be assigned in this section 

 this_fail   - ID of this failure 

 total_power_loss  - power loss from all failures in this section 

 system_portion  - the portion to be assigned to this system 

 this_share   - the share of all WECs (wecs_share) or the array (array_share) 

If the failures in the particular section of assign_lost_revenue_fails_maint causes any power loss on 

the array (i.e. if total_power_loss > 0) then the portion of total_power_loss assigned to this_fail is 

identified and stored in the variable this_fail_portion. The share of the overall lost revenue from 

the array at that interval is then calculated by multiplying this_fail_portion by the system_portion 

and this_share. This method means that if a reduced-capacity WEC has suffered two failures, but 

one has had no effect on power, then only the other failure is assigned any of the blame. If none of 

the failures have any effect on array power loss, then the blame is split evenly between them. 

7.13.12 Print interval 

The subroutine print_interval in the array_object class module is only called when a ‘full run’ 

process is taking place in order to print array-relevant information to the ‘run sheets’ (see section 

6.2). It is called by the maint_manager object, as shown in Figure 7.3 (page 52), with arguments 

including date information (i.e. irun and this_interval) and the starting column of particular sections 

of run_sh (e.g. wec_start_col). 

The subroutine starts by printing the array-based headers if it is the first interval of a year (i.e. if 

this_interval = 1). As described in section 6.2, this includes “Array failures” and “Array power 

capacity”. In the “Array failures” column, the state of the array (e.g. “Operating”) is printed along 

with a list of the array-based failures currently sustained. The maximum severity of the failures is 

obtained using the get_fail_number function in the array_fail_arr object (see section 7.25) and the 

cell is filled with the appropriate colour (i.e. red for major failures, amber for intermediate, and 

green for minor). If the array-based maintenance category (“Moorings inspection”) is taking place 

then the cell reads "Subsea inspection" and is filled dark red. The cells in the “Array power 

capacity” column contain the array_power (see section 7.13.5). 

The value of wec_start_col is updated for every wec object before the print_interval subroutine is 

called, thereby printing the information for each WEC in the array (see section 7.14.20). The value 

of the argument techs_start_col is then sent to the print_interval subroutine in the technicians 

object (section 7.15.5), thereby printing information about the technicians at the O&M base to the 

run_sh, as well as information about external contractors. 



 

Page 89 of 169 

 

7.13.13 Post process 

The post_process function in the array_object is called by maint_manager (section 7.5.9) in order 

to control the printing of output information to the ‘Results’ spreadsheet (section 6.1). To achieve 

this, the function prints output data about each WEC using the draw procedure in the relevant 

output objects (i.e. wec(i).get_wec_output_list .draw, section 7.18.4). The WEC output list objects 

are stored in the variable wec_output_arr_loc so that the procedure draw_all_wecs in the array 

output object (array_output_arr, section 7.17.7) can print the relevant output data. Also, the 

subroutine draw in the array_output_arr object (section 7.17.4) is called to print the output data 

pertaining to the entire wave energy array. Post_process is a function because it returns the 

array_output_arr object so that it can be used by maint_manager. 

7.13.14 Get functions 

Other class modules can obtain information contained within the array_object by using the 

following functions: 

 get_num_wecs   - the number of WECs in the array, num_wecs 

 get_technicians_object  - the technicians object 

 get_wec    - the wec_object for a specified WEC (this_wec) 

7.14 WEC OBJECT 

The wec_object class module is referred to simple as wec by the array_object. A new wec object is 

created for every WEC in the wave energy array, as defined by the user on the ‘Inputs’ spreadsheet 

(see section 4.1.1), during the setup_class procedure (see Figure 7.2, page 44). Each wec object is 

used to simulate the repairs and maintenance events undertaken on the device. As discussed in 

section 7.13.1, the start subroutine in array_object also creates an extra wec_object with the zero 

entry (i.e. wec(0)) in order to access procedures stored in the class module. The wec_object class 

module is also utilised during the cost-benefit analysis part of the O&M model, as described 

throughout section 7.12. A large number of variables are used throughout wec, shown in Table 7.1. 

Table 7.1. Variables used throughout the wec_object class module 

Variable name Data type Description 

state wec_state Current state of this WEC 

wec_id Integer ID of this WEC 

wec_power Double Power capacity of this WEC (0 to 1) 

wec_fail_arr Object wec_fail_list WEC failures object 

wec_output_arr Object wec_output_list WEC output object 

intervals_off_site Integer Number of intervals the WEC has left 

offsite 

retrieval_ints Integer Number of intervals the WEC has left to 

complete retrieval 

install_wndo_type Integer Type of operational limits required for 

WEC installation 

install_hours Double Number of hours required for WEC 

installation 

install_num_techs Integer Number of technicians required for install 



 

Page 90 of 169 

 

install_remaining_ints Integer Number of intervals the WEC has left to 

complete installation 

install_vessel_name String Name of vessel required for WEC 

installation 

install_vessel_id_in_use Integer ID of vessel used for marine operation for 

this WEC 

wec_maint_cat Integer() List of IDs of WEC-based maintenance 

events 

maint_due Integer() Identifier of when each WEC-based 

maintenance event is due 

maint_checker Integer() Identifier of if each WEC-based 

maintenance event has been done in each 

year 

set_for_maint yes_no Identifier of if WEC-based maintenance 

events are constrained by O&M base 

space 

delay_status String Cause of delay to work for this WEC, if any 

offsite_failures_array Integer() List of IDs of faults sustained by the WEC 

requiring retrieval 

offsite_fails_ints_worked Integer() Number of intervals worked on each 

repair of retrieval faults 

offsite_maint_array Integer() List of IDs of maintenance events being 

undertaken 

offsite_maint_ints_worked Integer() Number of intervals worked on each 

maintenance event 

offshore_repair_time Integer Number of intervals remaining to 

complete an onsite (i.e. offshore) repair of 

a fault 

onsite_vessel_id_in_use Integer ID of vessel used for onsite repair task 

delayed_by_techs Boolean If work is delayed by a lack of O&M base 

technicians 

num_contractors_needed Integer Number of external contractors required 

for task 

perm_techs_to_assign Integer Number of O&M base technicians to 

assign to task 

replacement_parts_delayed Boolean Identifier of if tasks are waiting for 

replacement parts to be delivered 

 

Note that in the ‘Data type’ column in Table 7.1, a VBA array is identified by an in-built data type 

followed by parentheses (e.g. Integer()). Custom data types (see section 7.1.1) are identified by 

italic font. 

 

 



 

Page 91 of 169 

 

7.14.1 Start 

The start subroutine of each wec is called by array_object during the setup_class procedure, as 

shown in Figure 7.2 (page 44). It is sent the arguments of i (the position in the for loop, see section 

7.13.1), vessel (to use the procedures in the vessel_object class modules), num_wecs (the total 

number of WECs in the array), and parts (the parts_object). The start subroutine is used to initialise 

the variables for each wec in the array and read relevant information from the data_sheet. 

Firstly, the wec_id is set to be the argument i sent by the calling procedure. The remainder of the 

subroutine is only utilised for WECs in the array (i.e. if wec_id > 0) because the zero wec entry (i.e. 

wec(0)) is used solely for access to certain procedures. 

The objects controlling the failures sustained by the WEC (wec_fail_arr) and the output information 

(wec_output_arr) are created an initialised by calling their start procedures (wec_fail_arr.start and 

wec_output_arr.start, sections 7.16.3 and 7.18.1 respectively). The state is set to onsite and the 

wec_power is set to 1, saying that the model simulations start at the point when all WECs have 

been fully commissioned and deployed for the first time. 

The user-defined entries related to WEC installation listed in the data_sheet (section 4.1.1) are 

stored in the relevant objects; install_wndo_type, install_vessel_name, install_hours and install_ 

num_techs (described in Table 7.1). The other two installation-related variables, install_remaining_ 

ints and install_vessel_id_in_use, are initialised to zero, saying that no install operation is currently 

taking place. 

Each WEC-based scheduled maintenance event listed in the data_sheet (see section 4.1.3) is then 

considered using a for loop (with the identifier k) and an if condition identifying the events that 

have the action_reqd of “Retrieve WEC” (via maint_param_list, section 7.4). The variable count is 

used to keep track of how many such events have been identified. For each one, the variable array 

wec_maint_cat is re-sized from 1 to count and the new entry (i.e. wec_maint_cat(count)) is set to 

contain the ID of the maintenance event (k). The array maint_due is resized in the same way, with 

the new entry (i.e. maint_due(count)) set to zero, thereby saying that the corresponding 

maintenance category is not due yet. 

Note: the position of each WEC-based maintenance event in the arrays wec_maint_cat, maint_ 

due and maint_checker does not necessarily correspond to the ID of the event, unless they are 

listed together in the ‘Inputs’ spreadsheet. 

The variable maint_checker is re-sized as a two-dimensional array, with the first dimension 

containing entries for each year (i.e. 1 to no_run) and the second dimension corresponding to the 

maintenance event under consideration (i.e. 1 to count). It should be noted that the entries need 

to be this way round because VBA only allows the last dimension of a multi-dimensional array to be 

expanded. For each year in the project lifetime (i.e. yr_count from 1 to no_run), the relevant entry 

in maint_checker (i.e. maint_checker(yr_count, count)) is initialised to 1, saying that the 

maintenance event has already been done in that year. The user-defined information about the 

maintenance interval (i.e. get_interval_yrs) is then obtained from the maint_param_list object and 

stored in the Integer variable my_step. If the user has selected no staggered maintenance for that 

category (i.e. get_staggered_maint = “No”, see section 7.4), then all the WECs will undergo the 

maintenance event k (also identified by wec_maint_cat(count)) in the same year. This condition is 

met by looping through all years in the project lifetime (i.e. yr_count from 1 to no_run) with 



 

Page 92 of 169 

 

my_step as the Step, and setting to relevant entry in maint_checker (i.e. maint_checker(yr_count, 

count)) to zero, thereby saying that the maintenance event has not been done in those years yet. If 

my_step is equal to half the project lifetime, then only that year (my_step) is changed to zero for 

that maintenance event (i.e. maint_checker(my_step, count) = 0). This condition avoids the “Major 

components refit” maintenance task being undertaken in the final year of the project lifetime (e.g. 

year 20 if my_step is 10). If the user has chosen the maintenance to be staggered (i.e. get_ 

staggered_maint = “Yes”, see section 7.4), then the start year of the maintenance must first be 

identified. This is assigned by finding the portion of WECs to start undergoing the maintenance 

event in the years 1 to my_step using a for loop and the identifier j. In each case, if the wec_id is 

less than or equal to that portion (i.e. num_wecs * (j / my_step)), then the start_yr is identified as 

the year under consideration (j). A new for loop then considered each year in the project lifetime 

(i.e. up to no_run) from start_yr with the Step of my_step, filling the relevant entry in maint_ 

checker (i.e. maint_checker(yr_count, count)) with zero. Error handling is in place if the start_yr 

value is not identified correctly, or if the user-defined entry of staggered maintenance is invalid. 

Following the maintenance events loop, the remaining variables are initialised; replacement_parts_ 

delayed to False, delay_status to “none”, and onsite_vessel_id_in_use to zero. 

7.14.2 Determine failure 

The subroutine determine_failure is used to simulate the occurrence of faults on WECs using a 

Monte Carlo analysis. It is called by the procedure of the same name in array_object (see section 

7.13.2) with the arguments fail_cat (the ID of the fault category) and num_wecs (the number of 

WECs in the array).  

The analysis is only undertaken if the WEC state is onsite. A random number between 0 and 1 is 

generated using the Rnd function and stored in the Double variable rand. If this value is greater 

than the probability of the fail_cat not failing in a given interval (identified in fail_param_list with 

get_percent, section 7.3) then the failure is simulated. The function add_wec_fail is called with 

fail_cat as the argument in order to call the add_fail subroutine in the failures object wec_fail_arr 

(see section 7.16.3). In addition, the set_total_occurrence subroutine in the output object for the 

fault categories (printed on the ‘Results’ spreadsheet, see section 6.1), fail_output_list, is also 

called to update the total occurrence of that failure. The wec_power is then updated by subtracting 

the power loss sustained due to that failure from the current wec_power. It is important to note 

that the power loss listed in the relevant fail_param_list object (i.e. get_fail_param(fail_cat)) is in 

the format of array-based power loss. Therefore, it must be converted into wec-based power loss 

by multiplying it (i.e. get_power) by the total number of WECs in the array (num_wecs) before 

being subtracted from the current wec_power. Finally, wec_power is set to be zero if the sustained 

failure would otherwise make it a negative value. 

7.14.3 Set for scheduled maintenance 

The subroutine set_maint_due is called during the determine_fix procedure in the array_object 

class module (section 7.13.3) in order to determine if a given WEC-based scheduled maintenance 

event is to be undertaken. It is sent the date information iyear (the current year) and this_interval 

(the current interval in iyear) as arguments, as well as the identifier this_entry. The value of 

this_entry corresponds to the current number of WEC-based maintenance events considered in the 

for loop in array_object.determine_fix where set_maint_due. This means that this_entry 



 

Page 93 of 169 

 

corresponds to the relevant entry in the maintenance arrays in the wec object (i.e. wec_maint_ 

cat(this_entry), maint_due(this_entry) and maint_checker(iyear,this_entry)). 

The subroutine set_maint_due only continues if the WEC state is onsite and if the maintenance 

category under consideration has not already been done and was assigned to be undertaken in this 

year (i.e. if maint_checker(iyear, this_entry) = 0). The procedure array_object.determine_fix already 

identified that this_interval is greater than the interval specified for maintenance (maint_due_ 

interval, section 7.13.3). Therefore, if the conditions have been met then the relevant entry in the 

maint_due array (i.e. maint_due(this_entry)) is set to 1, thereby identifying that maintenance is 

due. It is possible that other challenges, such as adverse weather conditions, will cause some 

maintenance events to face significant delays. In rare cases, this could cause the event to carry 

over into the next year. This scenario is accounted for by changing the relevant entry in the 

maint_checker array (i.e. maint_checker(iyear + 1, this_entry)) to zero if this_interval is the last 

interval of the year (i.e. equal to no_intervals) and iyear isn’t the final year of the project lifetime 

(i.e. is less than no_run). 

The subroutine define_set_for_maint is also called by the determine_fix procedure in array_object 

in order to utilise the user-defined constraint on the number of WECs allowed at the O&M base 

solely for maintenance (see section 4.1.1). If there is enough space at the O&M base, then define_ 

set_for_maint is sent the definition String value “yes”, which then makes the set_for_maint 

variable equal to yes (using the yes_no custom data type, section 7.1.1). Otherwise, set_for_maint 

is set to no, thereby constraining the WEC-based maintenance events. 

7.14.4 Attempt fix 

The subroutine attempt_fix is called by the procedure of the same name in the array_object class 

module, as described in section 7.13.4, in order to simulate the start of marine operations to repair 

failures or undertake scheduled maintenance on the WEC represented by the wec object. To 

achieve this, it is sent the date information of irun (current year) and this_interval (current interval 

in irun), as well as the class modules it needs to access; weather, vessel, parts and delays. The 

subroutine is also sent the total number of WECs in the array (num_wecs) and the number of WECs 

that are not on site at the moment (num_wecs_offsite). A number of variables are used throughout 

attempt_fix: 

 j    - identifier 

 fail_arr   - stores a list of WEC-based failures 

 fuel_hours   - actual number of hours to undertake a marine operation 

 wndo_length  - number of hours to undertake marine operation, rounded up to 

the nearest full time_step 

 ops_lim_type  - type of operational limits for marine operation 

 vessel_name_reqd - name of vessel required for marine operation 

 vessel_id_to_use  - ID of vessel to use for marine operation 

 this_tech   - identifier of technicians 

 actions_array()  - list of actions required to correct faults 

 this_action  - name of an action required to correct faults 

 new_fail_arr()  - stores a modified list of WEC-based failures 

 this_part_type  - name of spare part required for correcting faults whilst offshore 

The main structure and functionality of the subroutine attempt_fix is shown in Figure 7.8. 



 

Page 94 of 169 

 

wec_object.
attempt_fix

fail_arr =

wec_fail_arr.
get_fail_arr_id

If state = on_site

If any failures need retrieval and/
or if  any maintenance is due

any_fails_need_retrieval

any_maint_ready

If enough space at O&M base vessel_id_to_use
ret_vessel_id_to_use

If vessel is available Calculate length of 
weather window

vessel.get_free_travel_time

vessel.get_tow_time

longest_time_offshore

Ops_lim_type =
calmest_lims_for_op

If full_wndo_open 
= True

If not delayed by lack of technicians

vessel.mobilise_boat

Assign technicians and contractors

technicians.
add_contractor_fees

technicians.
add_tech_working

calc_intervals_offsite

vessel.add_op_costs

assign_vessel_costs_output

try_assign_replacement_parts

Otherwise, if there are any faults 
that can be corrected onsite

actions_array =
ret_actions_reqd

Identify priority action
Ret_action_onsite_priority

Assess constraints on undertaking this_action and send vessel if possible  

Figure 7.8. Structure of attempt_fix in wec_object 

As indicated by Figure 7.8, attempt_fix is structured in a way that the priority is given to actions 

which require the WEC to be retrieved and taken to the onshore or quayside O&M base. This 

includes failures which require retrieval, as well as any WEC-based maintenance event. The second 

level of the hierarchy is for failures which can be corrected whilst the WEC in onsite by replacing 

certain parts (i.e. a PTO unit or instrumentation box, see section 7.9). In the case where a WEC has 

sustained two failures, one which requires retrieval and one which needs spare parts, then both 

faults are corrected once the WEC is at the O&M base. This hierarchy is made clear throughout this 

section and with the descriptions of the procedures used in the wec object. 



 

Page 95 of 169 

 

The subroutine only continues if the state of the WEC is onsite. A list of the failures sustained by 

the WEC is obtained using the get_fail_arr_id function in the failures object wec_fail_arr (section 

7.16.3) and is stored in the fail_arr variable.  

The WEC requires retrieval if there are any failures which need that action (identified with the 

Boolean function any_fails_need_retrieval, section 7.14.6) or if there is any WEC-based 

maintenance due (using the Boolean function any_maint_ready, section 7.14.34). The task is only 

considered further is there is enough space at the O&M base (i.e. if num_wecs_offsite < max_ 

wecs_offsite). The ID of the vessel to be used for the marine operation (vessel_id_to_use) is 

identified using the function ret_vessel_id_to_use (section 7.14.24) with install_vessel_name as an 

argument. If no suitable vessel is available then the returned value is -5. The code in this section 

only continues if a suitable vessel is found (i.e. if vessel_id_to_use > 0). The actual length of the 

marine operation is calculated by obtaining the vessel travel times (i.e. get_free_travel_time + 

get_tow_time) from the relevant vessel object (i.e. vessel(vessel_id_to_use)). This is added to the 

time it takes to retrieve the WEC once the vessel is at site (via longest_time_offshore, section 

7.14.7) to give the value of fuel_hours. This value is rounded up to the nearest time_step to give 

the length of required marine operation in hours as a multiple of the number of intervals 

(wndo_length). The type of operational limits required for the retrieval operation, ops_lim_type, is 

calculated by the function calmest_lims_for_op (see section 7.14.8). Using this information, the 

accessibility of the weather window is assessed using the Boolean function full_wndo_open 

(section 7.14.11). The retrieval section code only continues if this function returns True, indicating 

that the weather window is open. The Boolean variable delayed_by_techs is then initialised to 

False, saying that the work is not delayed by a lack of technicians, before an if condition identifies 

whether external contractors cannot be hired (i.e. if short_term_contracts_enabled = False). If this 

is the case, then delayed_by_techs is changed to True if the number of available technicians (i.e. 

technicians.get_num_techs_avail, section 7.15) is less than the number of technicians required for 

the retrieval operation (i.e. same as an installation, install_num_techs). The retrieval operation is 

only carried out if this final condition is met (i.e. if delayed_by_techs = False). As soon as a 

constraint is met which causes the work to be delayed, then the delays object is updated by calling 

its subroutine add_this_delay (section 7.10.2) and setting the delay_status of the WEC accordingly. 

If the retrieval operation is set to go ahead, then the identified vessel (vessel_id_to_use) is sent 

(vessel.mobilise_boat, section 7.8.4) for the number of intervals in the weather window (wndo_ 

length / time_step). The ID of the vessel is stored in the variable install_vessel_id_in_use for use by 

the next_interval subroutine (see section 7.14.14). The number of contractors required for the 

retrieval operation (num_contractors_needed) is then calculated using the install_num_techs and 

the number of available technicians at the O&M base. If num_contractors_needed is zero, then the 

identifier of the number of O&M base technicians to assign to the task, perm_techs_to_assign, is 

set to be the value of install_num_techs. If contractors are needed, then all the available O&M 

base technicians are first stored in perm_techs_to_assign, before the contractors’ fees are added 

(technicians.add_contractor_fees, section 7.15.3) for each of the num_contractors_needed. An 

error message is displayed if this point in the code is reached and the user has specified not to hire 

contractors (i.e. if short_term_contracts_enabled = False, section 7.15.1). Each of the O&M base 

technicians identified by perm_techs_to_assign is then assigned to the task by calling the 

subroutine technicians.add_tech_working (section 7.15.2). After technicians have been assigned, 

the WEC state is set to being_removed and the number of intervals required offsite to complete 

the repairs and/or maintenance tasks, intervals_off_site, is calculated by the function calc_ 

intervals_offsite (see section 7.14.9). The number of intervals required to complete the retrieval 



 

Page 96 of 169 

 

operation (retrieval_ints) is calculated by dividing the wndo_length by the time_step, and the 

wec_power is set to zero. An If-Else condition is then used to determine how to assign the vessel 

costs using the subroutine assign_vessel_costs_output (see section 7.14.12). This can either be sent 

the argument “maint_only” if only maintenance is going to be undertaken, “offsite repairs only” if 

the WEC only has failures, or “fails and maint” if both repairs and maintenance are going to be 

carried out. Finally, the delay_status of the WEC is set to “none” and any sustained failures which 

could have been repaired whilst the WEC was on site (i.e. by having parts replaced) are accounted 

for by trying to assign the necessary spare parts to the task (try_assign_replacement_parts, section 

7.14.15). This assumes that the replacements can be made rapidly once the WEC is offsite and will 

not incur any additional time at the O&M base. 

If the WEC does not require retrieval but there are failures (i.e. if fail_arr(1) > 0) then replacement 

of certain parts whilst the device is onsite (i.e. offshore) can take place. Initially, the number of 

intervals required to complete the task, offshore_repair_time, is set to zero. A list of actions 

(actions_array) required to correct the failures in fail_arr is obtained using the function ret_ 

actions_reqd (section 7.14.25). This assumes that multiple failures requiring the same action can all 

be corrected at once by replacing the affected part. It is also assumes that two parts (i.e. a PTO unit 

and an instrumentation box) cannot be replaced in the same operation due to logistics surrounding 

vessel capacity. As a result, the action that takes priority (this_action) is calculated by the function 

ret_action_onsite_priority (section 7.14.22). The list of failures is then modified to contain only 

those faults which require the prioritised action (new_fail_arr). The name of the vessel required for 

this action is obtained by the function vessel_for_action (section 7.14.23) and stored as 

vessel_name_reqd. The ID of an available vessel with the identified name (vessel_id_to_use) is then 

found using the function ret_vessel_id_to_use (section 7.14.24). The availability of spare parts at 

the O&M base is assessed by first identifying the required part (ret_part_to_replace, section 

7.14.10) then calling the function all_parts_available in the parts object (section 7.9.2). The code 

then continues with the same assessments seen in the retrieval section (i.e. full_wndo_open, 

technicians etc.) if the required spare part is available. If the marine operation is to go ahead after 

all of these constraints have been assessed, then it is simulated in a similar way as described 

previously in this section. The key differences between onsite repairs and WEC retrieval is that the 

vessel_id_to_use is set to be onsite_vessel_id_in_use, the state becomes under_repair, the 

offshore_repair_time is set to be wndo_length / time_step and assign_vessel_costs_output (see 

section 7.14.12) is sent the argument "onsite fails only". Also, the subroutine order_new_parts is 

called in the parts object (see section 7.9.2), thereby completing the start of the simulated ‘onsite 

repair’ marine operation. 

7.14.5 Number of onsite technicians required 

The function num_onsite_techs_reqd is used by the attempt_fix subroutines in both the array_ 

object (section 7.13.4) and wec_object (section 7.14.4) class modules in order to identify the 

number of technicians required to undertake an onsite (i.e. offshore) repair (i.e. replacement of 

key parts). It is sent the arguments fail_arr (a list of failures), vessel (the vessel_object to access its 

procedures), and this_vessel_id (the ID of the vessel being used for the marine operation). 

Firstly, the number of technicians required to fix the failures listed in fail_arr is calculated. This is 

achieved by initialising num_techs_for_fails to zero before a for loop considers each failure in turn 

using the identifier i. If the vessel required for that failures (i.e. get_vessel_reqd from the relevant 

fail_param_list object, section 7.3) matches the name of the vessel (i.e. get_name from the 



 

Page 97 of 169 

 

vessel(this_vessel_id) object, section 7.8.2) then the number of technicians that the failure requires 

(i.e. get_techs_reqd from the relevant fail_param_list object, section 7.3) is added to the value of 

num_techs_for_fails. Once each failure has been considered, the value of num_techs_for_fails is 

checked against the capacity of the required vessel (i.e. get_personnel_capacity from the 

vessel(this_vessel_id) object, section 7.8.2). If more technicians are required than can fit on board 

the vessel, then the return  value is set to the vessel capacity, thereby assuming that a full crew can 

undertake the operation. If the value of num_techs_for_fails is 1, then health and safety 

considerations forces the return value to become 2, stating that one technician can never 

undertake a marine operation alone. Error handling is in place to highlight if a vessel is given the 

capacity of 1 on the ‘Vessels’ spreadsheet (section 4.2). Otherwise, the return value is set to be 

num_techs_for_fails. 

7.14.6 Any failures need retrieval 

The Boolean function any_fails_need_retrieval is called by the wec procedures attempt_fix (section 

7.14.4) and next_interval (section 7.14.14), as well as the cost-benefit analysis part of the model 

(section 7.12). It is used to identify if any of the failures listed in a fail_arr require the action 

“Retrieve WEC”, as listed in the ‘Inputs’ spreadsheet (section 4.1.2). 

The return value, temp_bool, is first initialised to False, saying that fail_arr doesn’t contain any 

failures which require retrieval. If there any failures within the list (i.e. if fail_arr(1) > 0) then each 

one is considered in a for loop with the identifier i, from 1 to the upper boundary (i.e. UBound) of 

the fail_arr. If the action required to repair that fault (i.e. get_action_reqd from the relevant 

fail_param_list object, section 7.3) is “Retrieve WEC” then temp_bool is changed to True and the 

for loop is ended, thus avoiding any unnecessary looping. The function name, any_fails_need_ 

retrieval, is set to temp_bool, becoming True if any of the failures listed in fail_arr do require WEC 

retrieval. 

7.14.7 Longest time offshore 

The Double function longest_time_offshore is used by the wec procedures attempt_fix (section 

7.14.4) and get_time_until_repaired (section 7.14.29, involved with cost_benefit_analysis) in order 

to calculate the number of hours required to remove a WEC from site, given its failures and/or 

scheduled maintenance events. The function is sent the list of failures (fail_arr) and the action to 

be undertaken (this_action). The String variable this_action is either sent as “retrieve” if the WEC 

requires retrieval or “replace” if onsite repairs are going to take place. 

The return value, temp_long_time, is first initialised to zero. If this_action is “retrieve” then the 

longest time required for WEC retrieval is first assessed from all the failures and then from all the 

maintenance events due. To achieve this, each of the failures (if there are any) is considered in a 

for loop. If the action required for that fault is “Retrieve WEC” (obtained using get_action_reqd 

from the relevant fail_param_list object, section 7.3) then temp_long_time is updated by taking 

the maximum value of the existing temp_long_time and the number of hours offshore required for 

that failure (i.e. get_hours_offshore) using the custom max function (see section 7.1.7). Note that 

this ignores any failures that could otherwise be repaired onsite because the model assumes these 

part replacement tasks can be completed easily whilst the WEC is at the O&M base for other 

repairs and/or maintenance. A new for loop then considers each WEC-based maintenance event 

listed in the wec_maint_cat variable (see section 7.14.1). If the event is scheduled to be 

undertaken (i.e. this_maint_ready, section 7.14.34) then temp_long_time is again updated using 



 

Page 98 of 169 

 

the max function and get_hours_offshore from the relevant maint_param_list object (section 7.4). 

If the String variable this_action is given as “replace” then only failures need to be considered 

(because the WEC would have been set for retrieval otherwise). Each fault is considered in a for 

loop with the return value being updated every time by adding the existing temp_long_time to the 

number of hours required offshore (i.e. get_hours_offshore from the relevant fail_param_list 

object, section 7.3). The user is prompted to exit the program (i.e. terminate_program, section 

7.1.8) if an invalid entry of this_action has been sent to the function. Otherwise, the function name 

(longest_time_offshore) is set to be the value of temp_long_time for use by the calling procedure. 

7.14.8 Calmest limits for operations 

The function calmest_lims_for_op is used to identify the ID of the type of operational limits with 

the most restrictive weather conditions from a list of failure and/or the scheduled maintenance 

events to be undertaken on the WEC. It is called the wec procedures attempt_fix (section 7.14.4) 

and next_interval (section 7.14.14). The functionality of calmest_lims_for_op shows the 

importance of the user listing the operational limits types in the correct order in the ‘Ops Limits’ 

spreadsheet, as described in section 4.4. The function is sent the list of failures (fail_arr) and the 

action to be undertaken (this_action). The String variable this_action is either defined as “retrieve” 

if the WEC requires retrieval, “replace” if onsite repairs are going to take place or “subsea” if array-

based failures are being assessed. 

The return value, temp_min_ops_type, is first initialised to 10 (i.e. a nominally large number). If 

this_action is “retrieve” then the failures requiring retrieval are assessed first, ahead of each 

scheduled maintenance event due to be carried out on the WEC. This follows a similar structure to 

the function longest_time_offshore, described in section 7.14.7, where failures and maintenance 

events are considered in a for loop. However, the difference is that the return value is updated by 

using the custom min function (not max, section 7.1.7) to find the minimum value of the existing 

temp_min_ops_type and the operational limits type of the task under consideration (get_ops_ 

limits_type). If this_action is either “replace” or “subsea” then only the failures listed in fail_arr 

need to be assessed. Again, the custom function min is used to update the return value. Error 

handling is in place to prompt the user to end the program if the value of this_action is invalid, or if 

temp_min_ops_type is still equal to 10 (the initialised value) at the end of the procedure. 

Otherwise, the function name (calmest_lims_for_op) is set to be the value of temp_min_ops_type 

for use by the calling procedure. 

7.14.9 Calculate intervals offsite 

The function calc_intervals_offsite is called by the wec procedures attempt_fix (section 7.14.4), 

next_interval (section 7.14.14) and get_time_until_repaired (section 7.14.29) in order to calculate 

the number of intervals a WEC needs to spend offsite at the O&M base to undergo repairs and/or 

maintenance tasks. It is sent a list of the failures sustained by the WEC in the variable fail_arr. 

The return value, temp_intervals, is first initialised to zero. Each of the failures contained within the 

fail_arr (if there are any) are then considered in a for loop with the identifier i. If the failure 

requires the action “Retrieve WEC” (obtained using get_action_reqd from the relevant fail_param_ 

list object, section 7.3) then the number of days it requires at the O&M base is converted into 

intervals (i.e. get_days_onshore * (24 / time_step)) and added to the return value. A new for loop 

then considers each of the WEC-based maintenance tasks (in wec_maint_cat, defined in section 

7.14.1). If the function this_maint_ready (section 7.14.34) identified that the task is due to be 



 

Page 99 of 169 

 

completed, then the temp_intervals value is again updated by adding the number of days it 

requires at the O&M base (converted into intervals). Error handling is in place if the return value is 

still zero at the end of the procedure. Otherwise, the function name (calc_intervals_offsite) is set to 

be the value of temp_intervals for use by the calling procedure. 

7.14.10 Part to replace 

The String function ret_part_to_replace is called by the wec functions attempt_fix (section 7.14.4) 

and try_assign_replacement_parts (section 7.14.15) in order to identify which replacement parts (if 

any) are required to correct the failures sustained by the WEC. The list of failures is sent as the 

variable fail_arr and the parts object is also given so its procedures can be used in the function. The 

two calling procedures use ret_part_to_replace in slightly different ways. As described in section 

7.14.4, the onsite repairs part of attempt_fix sends ret_part_to_replace a list of the failures which 

require the prioritised action (new_fail_arr). Therefore, only one replacement part will be 

identified. However, the procedure try_assign_replacement_parts does not assess the actions in 

the same way ahead of calling ret_part_to_replace. This is accounted for in the functionality of the 

procedure. 

To achieve its purpose, the function first assesses the failures contained in fail_arr (if there are any) 

by sending it to the parts function multi_replacement_types_arr (see section 7.9.3) and storing the 

returned value in the variable array parts_type_arr. If the returned array contains only one String 

value, then that entry (i.e. parts_type_arr(1)) is considered. If it is “none” then the return value, 

temp_ret, is also set to “none”. Otherwise, temp_ret becomes that entry’s value. If more than one 

entry is contained in parts_type_arr then temp_ret is set to “multiple”. If no failures have been 

sustained by the WEC, then the return value is set to “none” if scheduled maintenance is the 

reason why this function has been called (i.e. if any_maint_due = True, section 7.14.34). If neither 

repairs nor maintenance is to be carried out then this function should not have been called and the 

user is prompted to end the program (i.e. terminate_program, section 7.1.8). Otherwise, the 

function name (ret_part_to_replace) is set to be the value of temp_ret for use by the calling 

procedure. 

7.14.11 Full window open 

The Boolean function full_wndo_open is used to assess the accessibility of a weather window of a 

given length and severity. It is called whenever a marine operation is due to be undertaken in the 

model simulations; in the wec functions attempt_fix (section 7.14.4) and next_interval (section 

7.14.14), as well as attempt_fix in the array_object class module (section 7.13.4). The function is 

sent the weather object to access its information and procedures, as well as the date information 

irun (current year) and start_interval (current interval in irun). The length of the required weather 

window is given in hours as wndo_length and the severity is identified by the type of operational 

limits in ops_lims_type. 

The function name (full_wndo_open) is first initialised to False, saying that the required weather 

window is inaccessible (i.e. closed). The number of accessible intervals in the window, count_open, 

is initialised to zero. Each interval in the weather window is assessed in turn by using a for loop 

from 1 to the number of intervals represented by wndo_length (i.e. wndo_length / time_step) with 

the identifier i. If the interval being assessed occurs beyond the end of the array lifetime, then the 

window is deemed to be inaccessible. This is identified if irun is equal to the project lifetime 

(no_run) and if the interval being assessed (i.e. start_interval - 1 + i) goes beyond the number of 



 

Page 100 of 169 

 

intervals in a year (no_intervals). In this case, the value of count_open is set to zero, effectively 

closing the weather window. If the interval under consideration is within the project lifetime, then 

the weather function get_this_wndo (see section 7.6.2) is used to determine if this_wndo is 

“OPEN” or “CLOSED”. If this_wndo is “OPEN” (i.e. accessible), then 1 is added to the value of 

count_open. Once all intervals in the weather window have been considered, the Boolean value of 

full_wndo_open is only set to True if the value of count_open is equal to the number of intervals in 

the window (i.e. wndo_length / time_step), thereby telling the calling procedure that the full 

requested weather window is accessible. 

7.14.12 Assign vessel costs output 

The subroutine assign_vessel_costs_output is used throughout the model whenever a marine 

operation is started in order to assign the vessel costs (i.e. fuel and hire fees) to the appropriate 

failure categories and maintenance events. This occurs in the wec functions attempt_fix (section 

7.14.4) and next_interval (section 7.14.14), as well as attempt_fix in the array_object class module 

(section 7.13.4). The information is used in producing the failures and maintenance output tables 

presented in the ‘Results’ spreadsheet (section 6.1). To achieve this, the subroutine is sent the 

incurred vessel costs (total_hire_fees and total_fuel_cost), a String identifier of how to assign the 

costs (my_type), a list of sustained failures (fail_arr), and the total number of hours required to 

complete the marine operation or offsite task (rounded up the nearest whole interval, total_hours_ 

loc). 

The String argument my_type is sent to the subroutine as one of the following options: 

 “onsite fails only” - only on-site parts replacement tasks are taking place 

 “offsite repairs only” - only off-site repairs are being undertaken 

 “maint only”  - only off-site scheduled maintenance is being undertaken 

 “fails and maint”  - scheduled maintenance and fault repairs are taking place 

In the cases where my_type is given as either “onsite fails only” or “offsite repairs only”, the 

function fails_time_share_arr is first used to create a two-dimensional array consisting of the ID of 

each failure (in the first dimension) and the corresponding portion of the costs to be assigned (in 

the second dimension, from 0 to 1), as described in section 7.14.13. This 2D array is stored using 

the variable fails_share_arr. Each entry of the array is considered in a for loop from 1 to 

UBound(fails_share_ arr, 1) (i.e. the number of failures) using the identifier i. The portion to be 

assigned to that failure (i.e. fails_share arr(i, 2)) is multiplied by the total costs incurred (total_hire_ 

fees and total_fuel_cost) to calculate the share of the costs to be attributed (hire_fees_attibuted 

and fuel_cost_attibuted respectively). This information is then sent to the relevant function (either 

set_vessel_hire_fees or set_vessel_fuel_cost) in the failure output object (fail_output_list, see 

section 7.25.2) along with the ID of the failure (obtained from fails_share_arr(i, 1)). 

If my_type is “maint only” then only the maintenance output object (maint_output_list) needs to 

be used. The vessel costs do not need to be attributed in as complex a way as the failure 

categories. Instead, the function get_num_wec_maints_ready (see section 7.14.34) is used to split 

the vessel costs evenly between the maintenance events being undertaken. This information is 

sent to the relevant procedure (set_vessel_hire_fees or set_vessel_fuel_cost) in maint_output_list 

(see section 7.26.2) along with the ID of the maintenance category (obtained from the wec_maint_ 

cat list, see section 7.14.1).  



 

Page 101 of 169 

 

Finally, if my_type is given as "fails and maint" then the portions of the costs to be assigned to the 

failure categories (fail_portion) and the maintenance events (maint_portion) must be calculated. 

Initially, the 2D array containing the shares attributed to each failure (fails_share_arr) is obtained 

using the function fails_time_share_arr (section 7.14.13). The total number of hours that the WEC 

needs to spend offsite (total_hours_loc) is separated into the time due to the maintenance events 

(total_hours_maint) and the time due to the failures (total_hours_fails). This is achieved by 

considering each of the WEC-based maintenance categories in a for loop and using the function 

this_maint_ready (see section 7.14.34) to identify whether that event is to be undertaken. If it is 

then the value of total_hours_maint is updated to include the number of hours that the event 

requires offsite (i.e. 24 multiplied by get_days_onshore from the relevant maint_param_list object, 

section 7.4). The final value of total_hours_maint is subtracted from total_hours_loc to identify the 

value of total_hours_fails. This method of calculating the hours a WEC requires offsite must match 

the functionality of the procedure calc_intervals_offsite (section 7.14.9). Next, the variables fail_ 

portion and maint_portion are initialised to 0. If the corresponding number of hours (i.e. total_ 

hours_fails and total_hours_maint respectively) is greater than zero then portion is calculated by 

dividing that value by total_hours_loc. The costs are then assigned by following the steps described 

in the previous paragraphs, with the only difference being that the attributed costs (i.e. hire_fees_ 

attributed and fuel_cost_attibuted) are calculated by multiplying the share of the costs (e.g. fails_ 

share_arr(i, 2) * total_hire_fees for failure category i or total_hire_fees / get_num_wec_maints_ 

ready for a maintenance event, similar for fuel costs) by the corresponding portion (i.e. fail_portion 

or maint_portion). 

7.14.13 Failures time share array 

The function fails_time_share_arr is used to create a two-dimensional array containing the IDs of 

failures and their respective shares of the total number of hours required to complete the repairs. 

The function is called by the subroutine assign_vessel_costs_output, as described in section 

7.14.13. It is sent a list of the sustained failures (fail_arr) as well as the String identifier my_type, 

which can be one of three possible options: 

 “onsite fails only” - only on-site parts replacement tasks are taking place 

 “offsite repairs only” - only off-site repairs are being undertaken 

 “fails and maint”  - scheduled maintenance and fault repairs are taking place 

Firstly, the return value (share_arr) is first set up to be a two-dimensional VBA array where each 

entry in fail_arr is allocated two spaces (i.e. ReDim share_arr(1 To UBound(fail_arr), 1 To 2)). The 

total number of hours (total_hours) is also initialised to zero. 

If my_type is given as “onsite fails only” then the shares are assigned based on the number of hours 

that each failure requires offshore (i.e. onsite) in order to replace the associated part. The total 

number of hours required offshore to repair these failures is calculated by adding each fault’s 

get_hours_offshore value (obtained from the relevant fail_param_list object, section 7.3) to the 

total_hours in the same way as seen in the wec function longest_time_offshore (see section 

7.14.7). The share_arr entries are then filled by looping through each failure and calculating the 

share of the total hours by dividing the get_hours_offshore by the total_hours. The calculated value 

this_share is placed in the second dimension of the share_arr whilst the ID of the failure (i.e. 

fail_arr(i)) is put in the first dimension. 



 

Page 102 of 169 

 

If the value of my_type is either “offsite repairs only” or “fails and maint” then the share of the 

time is calculated based on the number of days required offsite at the O&M base to repair the 

failures. This follows the same process as the “onsite fails only” section with the primary difference 

being that get_hours_offshore (from the relevant fail_param_list object, section 7.3) is replaced by 

get_days_onshore multiplied by 24 (to convert days into hours). The value of total_hours is only 

updated if the failure under consideration does not have the get_days_onshore value of “N/A”. In 

other words, when a WEC is being taken to the O&M base to undergo retrieval-based WEC failures 

or scheduled maintenance, then failures which could have been repaired onsite are not assigned 

any of the vessel costs. This assumes that such failures can be corrected easily and rapidly once the 

WEC is as the O&M base, as discussed previously (e.g. in section 7.14.7). 

The function name (fails_time_share_arr) is set to be the value of share_arr for use by the calling 

procedure (assign_vessel_costs_output). 

7.14.14 Next interval 

The subroutine next_interval in each wec object is called by the procedure of the same name in the 

array_object class module, as described in section 7.13.7. It is used to set to wec up for the next 

interval and keep track of progress in repairs, maintenance and marine operations. If an offsite 

repair has been completed then next_interval assesses the constraints surrounding installation of 

the WEC and starts the marine operation as soon as possible. In order carry out its purpose, 

next_interval is sent the arguments irun (current year), this_interval (current interval in irun) and 

the number of WECs in the array (num_wecs), as well as the relevant objects weather, vessel, 

technicians, parts and delays. Several variables are used throughout the subroutine: 

 fail_arr()    - stores a list of WEC-based failures 

 i, j     - identifiers 

 fuel_hours    - actual number of hours to undertake a marine operation 

 wndo_length   - number of hours to undertake marine operation, rounded 

up to the nearest full time_step 

 offsite_hours   - the number of hours this WEC spent offsite for repairs / 

maintenance 

 this_tech    - identifier of technicians 

 current_fail_being_done - current failure being repaired offsite 

 fails_array_position  - identifier of position in an array 

 current_maint_being_done - current maintenance event being undertaken offsite 

 maint_array_position  - identifier of position in an array 

 actions_array()   - list of actions required to correct faults 

 this_action   - name of an action required to correct faults 

 new_fail_arr   - stores a modified list of WEC-based failures 

 vessel_name_reqd  - name of vessel required for marine operation 

 vessel_id_to_use   - ID of vessel to use for marine operation 

The structure and functionality of the subroutine next_interval is shown in Figure 7.9. Limited 

procedures are identified in the flowchart, however, more detail is provided in the subsequent 

text. 



 

Page 103 of 169 

 

wec_object.
next_interval fail_arr =

wec_fail_list.
get_fail_arr_id

If state = being_removed -1 from retrieval_ints

If parts still needed
try_assign_replacement_parts

If retrieval is complete state = off_site

vessel(install_vessel_id_in_use).
demobilise_boat

get_arr_retrieval_fails

Track current task being undertaken 
(repair or maintenance) get_arr_maint_ready

If state = off_site -1 from intervals_off_site

If parts still needed
try_assign_replacement_parts

Track current task being undertaken 
(repair or maintenance)

fail_currently_under_repair

maint_currently_under_repair

If repair is complete Check constraints Parts replacements done

Vessel available

Weather window open

Technicians available

If state = being_installed -1 from install_remaining_ints

If install is complete

vessel(install_vessel_id_in_use).
demobilise_boat

wec_output_arr.
fail_costs

fail_output_list.
set_costs_repair

If state = under_repair -1 from offshore_repair_time

If one action is complete Reset fail_arr for other action

If no more failures

state = on_site

wec_power = 1wec_output_arr.
avail_add

Set WEC for installation

 

Figure 7.9. Structure of next_interval in the wec_object class module 

 

 



 

Page 104 of 169 

 

As highlighted in Figure 7.9, the next_interval subroutine consists of four primary sections 

corresponding to the state of the WEC at the current interval; being_removed, off_site, 

being_installed and under_repair. The final lines of code in the procedure are used to check that 

the wec_power has not fallen below zero and update the ‘availability’ value for the ‘Results’ output 

spreadsheet (see section 6.1). 

If the WEC state is being_removed then the attempt_fix procedure (section 7.14.4) has started to 

retrieval operation after assessing each of the constraints (such as weather conditions etc.). The 

attempt_fix subroutine set a number of variables that are used in next_interval. This includes the 

length of the marine operation in terms of the number of intervals, retrieval_ints. This is updated 

at each interval here by subtracting 1. The scenario where the WEC has been taken to the O&M 

base to undergo certain tasks whilst it has also sustained failures which could have been repaired 

offsite is accounted for by calling the try_assign_replacement_parts subroutine (see section 

7.14.15). This is only called if the required parts have not already been assigned (identified with the 

Boolean variable replacement_parts_delayed). Once the retrieval operation has been completed 

(i.e. if retrieval_ints <= 0) then the WEC state is set to off_site and the vessel used can be 

demobilised (i.e. vessel(install_vessel_id_in_use).demobilise_boat, section 7.8.5). The value of 

install_vessel_id_in_use is then reset to zero, indicating that no vessel is currently assigned to this 

WEC. The tasks for which the WEC has been retrieved are undertaken immediately. This involves 

finding the list of failures which forced the retrieval (offsite_failures_array) using the function 

get_arr_retrieval_fails (section 7.14.16) and the list of due maintenance events (offsite_maints_ 

array) using get_arr_maint_ready (section 7.14.17). For each of these lists, an array is created to 

store the number of intervals that has been spent working on each task so far (offsite_fails_ints_ 

worked and offsite_maint_ints_worked respectively), with each entry being initialised to zero. The 

hierarchy of the code here means that failures are repaired ahead of maintenance being carried 

out, which is a realistic representation of the operations. Firstly, if there are failures, then the 

function assign_offsite_fail_techs (section 7.14.18) is called in order to assign technicians to the 

first repair task. If this function is successful (i.e. returns True) then the first entry in the offsite_ 

fails_ints_worked array is changed to 1. Otherwise, the number of intervals required offsite to 

complete the WEC repairs and maintenance (intervals_off_site) is increased by 1. If there are no 

failures then the first maintenance event due is assigned the technicians it requires. This follows 

the same process as the repairs section, except that the function assign_offsite_maint_techs 

(section 7.14.18) is used, and the offsite_maint_ints_worked array is updated if successful. Error 

handling is in place if this section is utilised without either repairs or maintenance being required, 

or if the value of install_vessel_id_in_use is still zero. 

If the WEC state is off_site then the previously discussed part of next_interval has identified that 

the retrieval operation has been completed and the arrays controlling the amount of worked 

undertaken so far (offsite_fails_ints_worked and offsite_maint_ints_worked) have been created. 

For each interval the state is off_site, the counter intervals_off_site is decreased by 1. As before, 

the subroutine try_assign_replacement_parts (see section 7.14.15) is called if some failures are still 

awaiting spare parts to be assigned (i.e. if replacement_parts_delayed = True). The ID of the failure 

currently being repaired (current_fail_being_done) is identified using the function fail_currently_ 

under_repair (section 7.14.19). If this returns a value greater than zero then it means that a repair 

is still being carried out. The position of this failure in the offsite_fails_ints_worked array (fails_ 

array_position) is obtained using the function find_fails_array_position (section 7.14.19). If the 

current interval is the first time this failure has been considered for this WEC’s particular series of 

tasks, then the function assign_offsite_fail_techs (section 7.14.18) is again used to assign 



 

Page 105 of 169 

 

technicians to that repair task. As before, the value of intervals_off_site is increased by 1 if there 

are not enough technicians available to start the task. If technicians have already been assigned to 

this failure, then the relevant position in the offsite_fails_ints_worked array is increased by 1. Once 

all failures have been repaired (i.e. the value of current_fail_being_done not greater than zero) 

then this same process is carried out for the maintenance tasks due on the WEC. The only 

difference is that the functions and variables names are related to maintenance, not the failures 

(i.e. current_maint_being_done, maint_currently_being_done, maint_array_position, find_ 

maint_array_position, offsite_maint_ints_worked, assign_offsite_maint_techs, see section 

7.14.19). 

If the WEC state is off_site and the value of intervals_off_site is less than or equal to zero, then the 

WEC has been fully repaired and inspected and is ready for installation. This process follows the 

exact same functionality as the relevant part of the attempt_fix subroutine, where the retrieval 

marine operation is commenced, as described in section 7.14.4. The key difference is that the 

delay_status is changed to "parts" (and delays.add_this_delay called accordingly) if the WEC is still 

waiting for a new PTO unit or instrumentation box to be assigned (i.e. if replacement_parts_ 

delayed = False). The only other differences from attempt_fix here are that the number of intervals 

required to complete the operation (wndo_length / time_step) is assigned to the variable install_ 

remaining_ints (rather than retrieval_ints) and the state of the WEC is set to being_installed. 

If the WEC state is being_installed then 1 is subtracted from the existing value of install_remaining_ 

ints. Once this value is less than or equal to zero, then the installation operation has been 

completed. At this point, the vessel used for installation (install_vessel_id_in_use) is demobilised 

(i.e. vessel(install_vessel_id_in_use).demobilise_boat, section 7.8.5) and its value is reset to zero. 

The outputs costs are updated by calling the procedures fail_costs and set_costs_repair in the 

objects wec_output_arr (section 7.18.2) and fail_output_list (section 7.25.2) respectively. The WEC 

is reset to its original position with state set to on_site, the start function in wec_fail_arr being 

called (clearing the list of failures on the WEC, section 7.16.3), and the wec_power changed to 1 

(i.e. full power). Each maintenance category that was completed whilst the WEC was offsite (i.e. if 

this_maint_ready = True for each WEC-based maintenance event, section 7.14.34) is also reset by 

changing the relevant entry of maint_checker (i.e. maint_checker(irun, i)) to 1 and maint_due (i.e. 

maint_due(i)) to 0. 

If the WEC state is under_repair then a part is being replaced whilst the device is still on site, as 

defined in the subroutine attempt_fix (section 7.14.4). The value of offshore_repair_time is 

decreased by 1 at each interval. Once this value becomes less than or equal to zero, then the 

marine operation to replace the parts has been completed and the vessel is back at the O&M base. 

The vessel used for the operation (onsite_vessel_id_in_use) is demobilised (i.e. vessel(onsite_ 

vessel_id_in_use).demobilise_boat, section 7.8.5) and its value is reset to zero. As discussed in 

section 7.14.4, the onsite repairs part of attempt_fix undertakes the tasks by prioritising one at a 

time using the function ret_action_onsite_priority (section 7.14.22). The selected action (this_ 

action) is again identified from the actions_array (obtained using the function ret_actions_reqd, 

section 7.14.21). The list of failures is modified so that new_fail_arr contains only those failures 

which require this_action. This new list is then sent to the procedures fail_costs and set_costs_ 

repair in the objects wec_output_arr (section 7.18.2) and fail_output_list (section 7.25.2) 

respectively in order to update the outputs only for the corrected failures. Then, rather than 

resetting the WEC-based failures object (wec_fail_arr) completely, its subroutine update_fail_arr 

(section 7.16.3) is called with new_fail_arr as the argument in order to clear only the corrected 



 

Page 106 of 169 

 

failures. The situation where all the onsite repairs have been carried out is identified if the function 

get_total_fails from the wec_fail_arr object (section 7.16.3) returns the value of zero. In this case, 

the WEC state is set to on_site and the wec_power is reset to full (i.e. 1). However, if there are still 

WEC-based failures listed in the wec_fail_arr object, then fail_arr is used to store the list. Each of 

the failures is then considered in a for loop using the identifier i. The wec_power is updated 

throughout the loop by subtracting the power loss incurred, remembering to convert the array-

based get_power from the relevant fail_param_list object (section 7.3) into wec_power format by 

multiplying it by num_wecs. The WEC state is reset to on_site, thereby leaving the WEC at the array 

site, but having corrected some of its sustained failures. 

7.14.15 Try assigning replacement parts 

The subroutine try_assign_replacement_parts is called by the wec procedures attempt_fix (section 

7.14.4) and next_interval (section 7.14.14). As described in these sections, try_assign_ 

replacement_parts is called when the WEC is being (and has been) retrieved and taken to the O&M 

base for other repairs or maintenance. It is used to identify whether any replacement parts are 

needed to correct failures which might have otherwise been repaired offshore (i.e. on site) and 

tries to assign them accordingly. It is sent the list of failures on the WEC (fail_arr) and the object 

parts. The Boolean identifier replacement_parts_delayed, defined for use throughout the wec class 

module (section 7.14), returns False if the parts are assigned successfully (or True otherwise). 

Firstly, the function ret_part_to_replace (section 7.14.10) is called with the arguments fail_arr and 

parts in order to identify which, if any, parts need to be assigned. The String returned value is 

stored in the variable name this_part_type and, as described in section 7.14.10, can either return 

“none”, “multiple” or the name of a part.  

If this_part_type is found to be “none” then the identifier replacement_parts_delayed is set to 

False, telling the calling procedure that replacements are not delayed (because there are not any).  

If this_part_type is found to be “multiple” then both part types are to be replaced. In this case, the 

function multi_parts_types_available (in the parts object, section 7.9.4) is used to identify whether 

all the required parts are available. If they are (i.e. if multi_parts_types_available = True) then the 

variable parts_type_arr stores a list of the replacement parts using the parts function multi_ 

replacement_types_arr (section 7.9.3). Each of the entries in this list is then considered in a for loop 

with the identifier i. The name of the part (i.e. parts_type_arr(i)) is sent to the part subroutine 

order_new_parts (section 7.9.2) in order to assign it to the task and re-order a new one for 

delivery. The identifier replacement_parts_delayed is then set to False to tell other procedures in 

the wec object that there is not delay due to a lack of spare parts. On the other hand, if not all the 

parts are available (i.e. if multi_parts_types_available = False) then replacement_parts_delayed is 

set to True. 

If this_part_type contains the name of a single part then the function all_parts_available (in the 

parts object, section 7.9.2) is used to identify whether that part is available. If the function returns 

True then the part subroutine order_new_parts (section 7.9.2) is called to assign the part to the 

WEC and re-order a new one for delivery. The identifier replacement_parts_delayed is then set to 

False. Otherwise, replacement_parts_delayed is set to True, thereby causing potential delays to 

installation of the WEC in next_interval (section 7.14.14). 

 



 

Page 107 of 169 

 

7.14.16 Array of retrieval failures 

The function get_arr_retrieval_fails is called during the wec subroutine next_interval (section 

7.14.14) in order to identify which failures sustained by the WEC required retrieval. To achieve this, 

it uses the variable fail_arr to store a list of the sustained failures (from wec_fail_arr.get_fail_ 

arr_id, section 7.16.3) and the identifier retrieval_fails (which is initialised to zero). If the WEC has 

sustained any failures then each entry in fail_arr is considered in a for loop using the identifier i. If 

the action_reqd for that failure (obtained from the relevant fail_param_list, section 7.3) is 

“Retrieve WEC” then the value of retrieval_fails is updated and the ID of the failure (i.e. fail_arr(i)) 

is added to the return value temp_array. If retrieval_fails is still zero at the end of the loop (i.e. no 

failures at all or no failures requiring retrieval) then the first and only entry of temp_array is set to 

be -5 (a nominal negative number). The function name get_arr_retrieval_fails is set to be equal to 

temp_array for use by the calling procedure (next_interval). 

7.14.17 Array of due maintenance categories 

The function get_arr_maint_ready is called during the wec subroutine next_interval (section 

7.14.14) in order to identify which maintenance events are currently due to be carried out on the 

WEC. The identifier count_maint is first initialised to zero. Each of the WEC-based maintenance 

categories (in wec_maint_cat, see section 7.14.1) is assessed in a for loop. If the function this_ 

maint_ready returns True for that event then count_maint is updated and the ID of the 

maintenance category (i.e. wec_maint_cat (i)) is added to the return value temp_array. If count_ 

maint is still zero at the end of the loop (i.e. no maintenance is due) then the first and only entry of 

temp_array is set to be -5 (a nominal negative number). The function name get_arr_maint_ready is 

set to be equal to temp_array for use by the calling procedure (next_interval). 

7.14.18 Assign offsite technicians 

The two Boolean functions assign_offsite_fail_techs and assign_offsite_maint_techs are both 

called during the wec subroutine next_interval (section 7.14.14) to identify if there are enough 

available technicians to undertake the current repair or maintenance task (respectively). If the 

required technicians are available or if external contractors can be hired, then the functions assign 

the relevant O&M base technicians to the task and update the contractor fees incurred if 

necessary. The functions are sent the arguments of irun (current year), this_interval (current 

interval in irun), the technicians object and this_cat (the ID of the failure category or maintenance 

event being undertaken). The two functions have exactly the same functionality and utilise the 

same procedures. The only difference is that assign_offsite_fail_techs accesses information for the 

failure using the fail_param_list class module (i.e. With fail_param_list.get_fail_param(this_cat), 

section 7.3), whilst assign_offsite_maint_techs utilises the maint_param_list object (i.e. With 

maint_param_list.get_maint_param(this_cat), section 7.4). 

Firstly, the Boolean return value (temp_bool) is initialised to False, meaning that the work cannot 

go ahead due to a lack of available technicians. The next section of the functions then assess 

whether the work is going to be delayed. Another Boolean variable, delayed_by_techs, is initialised 

to False, saying that the work can go ahead. However, if the user has specified in the ‘Labour’ 

spreadsheet (see section 4.3) that external contractors cannot be hired (i.e. if short_term_ 

contracts_enabled = False) the only the O&M base technicians can be used. If the number of 

available technicians (identified using the function get_num_techs_avail in the technicians object, 

see section 7.15.6) is less than the required number of technicians for that task (i.e. get_techs_ 



 

Page 108 of 169 

 

reqd) then the Boolean value of delayed_by_techs is changed to True. If contractors can be hired 

then delayed_by_techs stays as False. 

The second part of the functions then assigns technicians to the task and updates contractor fees, 

only if delayed_by_techs is False. The return value temp_bool is first changed to True so that the 

calling procedure knows that the work can go ahead. The number of contractors required (num_ 

contractors_needed) is then identified by subtracting the number of available technicians (i.e. 

technicians.get_num_techs_avail, section 7.15.6) from the number of technicians required for the 

task under consideration (i.e. get_techs_reqd). If there is at least 1 contractor required then the 

number of O&M base technicians to be assigned (i.e. perm_techs_to_assign) is set to be the 

number of available technicians. Each of the num_contractors_needed is then considered in a for 

loop and the technicians output is updated by calling add_contractor_fees in the technicians object 

(see section 7.15.3), with the costs to be assigned at the next interval (i.e. this_interval + 1) for the 

duration of the task (i.e. get_days_onshore converted into intervals by multiplying by (24 / time_ 

step)). If num_contractors_needed is greater than zero but the value of short_term_contracts_ 

enabled is False then the user is informed of the error. If no contractors are needed then the 

variable perm_techs_to_assign is simply assigned to be the value of get_techs_reqd. 

Each of the specified O&M base technicians to assign then considered in a for loop, from 1 to 

perm_techs_to_assign, using the identifier j. For each value of j, a nested for loop looks at every 

O&M base technician (from 1 to num_technicians) using the identifier this_tech. If this_tech is 

available (identified using the technicians function get_tech_availability, see section 7.15.6) then 

the person is assigned to the task by calling the technicians subroutine add_tech_working (section 

7.15.2) with the arguments of this_tech and the get_days_onshore (converted into intervals by 

multiplying by (24 / time_ step)). The nested for loop is exited once an available technician has 

been founded for that entry of perm_techs_to_assign. 

The function name (assign_offsite_fail_techs or assign_offsite_maint_techs) is set to be equal to 

Boolean return value temp_bool for use by the calling procedure (next_interval). 

7.14.19 Offsite tasks array 

When a WEC has been retrieved from site it is taken to an onshore or quayside O&M base to be 

repaired or inspected. The VBA code must keep track of which repairs and maintenance tasks have 

been completed so that technicians can be assigned to the work as appropriate for the required 

length of time. This aspect is simulated by the wec procedure next_interval, as described in section 

7.14.14), by utilising the following four functions: 

 fail_currently_under_repair  - ID of failure being repaired 

 find_fails_array_position  - position of a certain failure in offsite_failures_array 

 maint_currently_being_done  - ID of maintenance task being undertaken 

 find_maint_array_position  - position of a certain maintenance event in offsite_ 

maints_array 

The function fail_currently_under_repair utilises the two offsite-failures variable arrays defined for 

the whole wec class module, offsite_failures_array and offsite_fails_ints_worked, in order to find 

which failure is currently being repaired. The return value (this_fail) is first initialised to -5, saying 

that no failures are currently being repaired. If the WEC has had failures to repair (i.e. if offsite_ 

failures_array(1) > 0) then each entry of offsite_failures_array is considered in a for loop with the 

identifier i. If the number of intervals currently worked on that failure (i.e. offsite_fails_ints_ 



 

Page 109 of 169 

 

worked(i)) is less than the number required to finish the repair (i.e. get_days_onshore from the 

relevant fail_param_list, section 7.3, converted into intervals) then the return value this_fail is set 

to be the ID of that failure (i.e. offsite_failures_array(i)) and the loop is ended. The function name 

fail_currently_under_repair is set to be equal to this_fail for use by the calling procedure (next_ 

interval).  

The function find_fails_array_position is used to find the position of a failure ID (this_fail) in the 

variable offsite_failures_array. To achieve this, the return value temp_val is initialised to zero 

before a for loop considers each entry in offsite_failures_array using the identifier i. If the entry 

under consideration matches the value of this_fail then temp_val is set to i and the for loop is 

ended. The function name find_fails_array_position is set to be equal to temp_val for use by the 

calling procedure (next_ interval). 

The function maint_currently_being_done utilises the two maintenance-based variable arrays 

defined for the whole wec class module, offsite_maints_array and offsite_maint_ints_worked, in 

order to find which maintenance event is currently being undertaken. The return value (this_maint) 

is first initialised to -5, saying that no maintenance is currently being done. If the WEC has had 

maintenance to do (i.e. if offsite_maints_array (1) > 0) then each entry of offsite_maints_array is 

considered in a for loop with the identifier i. If the number of intervals currently worked on that 

maintenance event (i.e. offsite_maint_ints_worked (i)) is less than the number required to finish 

the task (i.e. get_days_onshore from the relevant maint_param_list, section 7.4, converted into 

intervals) then the return value this_maint is set to be the ID of that maintenance event (i.e. 

offsite_maints_array (i)) and the loop is ended. The function name maint_currently_being_done is 

set to be equal to this_maint for use by the calling procedure (next_ interval).  

The function find_maint_array_position is used to find the position of the ID of a maintenance 

event (this_maint) in the variable offsite_maints_array. To achieve this, the return value temp_val 

is initialised to zero before a for loop considers each entry in offsite_maints_array using the 

identifier i. If the entry under consideration matches the value of this_maint then temp_val is set to 

i and the for loop is ended. The function name find_maint_array_position is set to be equal to 

temp_val for use by the calling procedure (next_ interval). 

7.14.20 Print interval 

The subroutine print_interval prints information about the WEC at every interval of the model 

lifetime to the ‘run sheets’ spreadsheets (section 6.2) in a ‘full run’ process is taking place, as 

described in section 5.2. The subroutine is called for each wec by print_interval in the array_object 

class module (section 7.13.12). It is sent the name of the output sheet (run_sh), the current interval 

(this_interval) and the first column to start printing for this WEC (first_print_col). 

The headers are printed if the current interval is the first of the year (i.e. if this_interval = 1). This 

includes the ID of the WEC (using "WEC " and wec_id), as well as “failures” for the first column and 

“maintenance” for the second column. In addition, the overall section header “WECs” is printed if 

the wec_id is 1. 

The first column of the WEC’s printed section covers the sustained failures and repairs. A String list 

of the sustained failures (string_list) is obtained using the string_fail function in the wec_fail_arr 

object (section 7.16.3). Each of the possible WEC states is then considered with If-Else conditions. If 

the state is being_removed then the cell in the failures columns will read “Being removed” and will 



 

Page 110 of 169 

 

show the list of sustained failures (string_list). If the state is being_installed then the cell will read 

"Being installed" without the failures information (because they have all been repaired by that 

point). In both these transit cases, the cell is filled grey. If the state is under_repair then the cell 

reads “Under repair” and shows the string_list, as well as being filled dark red. If the state is 

off_site then the cell reads “Off site” and also shows the string_list, as well as being filled dark blue. 

If none of these conditions are met then the WEC state must be on_site. In this case, the failures 

cell just shows the list of failures (string_list) and is filled with the colour matching the most severe 

class of fault sustained. The severity information is obtained by setting the returned value of the 

function get_fail_number in the wec_fail_arr object (section 7.16.3) to the variable fail_number. 

This is defined as a New failure_no_object class module (section 7.16.5), containing information 

about the classification of faults. If there are failures on the on_site WEC (i.e. if string_list contains 

any failure IDs) then the cell is filled red if the most severe failure is ‘major’, amber if 

‘intermediate’, and green if ‘minor’. 

The second column of the WEC’s printed section contains information about the maintenance 

events scheduled on the device. If no maintenance is due (i.e. if any_maint_due = False, see section 

7.14.34) then the cell will simple read “Not due” with no background fill. If one or more 

maintenance events is due on the WEC, however, then a string_list is created to contain their IDs. 

This is achieved by looping through each of the WEC-based maintenance categories with the 

identifier i and using the variable maint_due to find whether that event is due (i.e. if maint_due(i) = 

1). If so, then a series of If-Else conditions control the formatting of the string_list to make it 

readable. After the loop, the user-defined input about the amount of space available at the O&M 

base for WECs solely undergoing maintenance is utilised by checking the function any_maint_delay 

(section 7.14.35). If the value is False then the cell prints “Due” and the string_list, as well as being 

coloured red, indicating that the listed maintenance events are to be carried out. If any_maint_ 

delay is True then the cell will read “Delay retrieval for maint” with the string_list and is coloured 

amber, indicating that the listed maintenance events are scheduled but are delayed due to a lack of 

space at the O&M base. 

7.14.21 Return actions required 

The function ret_actions_reqd is called on multiple occasions throughout the model in order to 

identify the actions required to correct any failures listed in fail_arr whilst the WEC is on site (i.e. 

offshore). It is called by the array_object procedures attempt_fix (section 7.13.4), next_interval 

(section 7.13.7) and assign_lost_revenue_fails_maint (section 7.13.8), the wec_object procedures 

attempt_fix (section 7.14.4) and next_interval (section 7.14.14), and the cost_benefit_analysis 

function worth_repairing_WEC (section 7.12.4). 

Firstly, the return value temp_array is set up to be a one entry array containing the String “n/a”. A 

counter (count) is also initialised to 1. If failures have been sustained then each one is considered 

using a for loop with the identifier i (from 1 to UBound(fail_arr)). The action required for that 

failure is obtained from the get_action_reqd function from the relevant fail_param_list object 

(section 7.3) and stored in the variable this_action. If it is the first time in the loop that any action 

has been considered then the first entry of the temp_array is changed to equal this_action. 

Otherwise, the custom function is_in_array (section 7.1.9) is used to determine whether 

this_action already exists in temp_array. If it doesn’t (i.e. if is_in_array = False) then 1 is added to 

the value of count and that entry of temp_array is changed to be this_action. An error message is 

displayed if there are no failures (i.e. if fail_arr(1) is less than or equal to zero and the user is 



 

Page 111 of 169 

 

prompted to exit the program (terminate_program, section 7.1.8). Another error message is 

displayed if the first entry of temp_array is still “n/a” at the end of the function. The function 

name, ret_actions_reqd, is set to be temp_array so it can be used by the calling procedures. 

7.14.22 Return onsite action priority 

The String function ret_action_onsite_priority is used to identify the onsite replacement action 

(from a list of possibilities, actions_array) which should take priority from the current list of 

sustained failures (fail_arr). It is called by the array_object procedure assign_lost_revenue_fails_ 

maint (section 7.13.8), the wec_object procedures attempt_fix (section 7.14.4) and next_interval 

(section 7.14.14), and the cost_benefit_analysis function worth_repairing_WEC (section 7.12.4). 

To achieve this, ret_action_onsite_priority first initialises the counter max_count to zero and sets 

the return value temp_priority to “n/a”. Each action listed in the actions_array is then considered 

in a for loop with the identifier i. For each one, another counter (count) is initialised to zero.  A 

nested for loop then considers every failure listed in fail_arr and identifies the action required to 

correct it using the get_action_reqd function from the relevant fail_param_list object (section 7.3). 

If this action matches the String value listed in the actions_array (i.e. actions_array(i)) then 1 is 

added to the value of count. After all the failures have been considered for that entry in actions_ 

array then temp_priority becomes actions_array(i) if the value of count is greater than the existing 

value of max_count. An error message is displayed if the value of temp_priority is still “n/a” at the 

end of the function. The function name, ret_action_onsite_priority, is set to be temp_priority so it 

can be used by the calling procedures. 

7.14.23 Vessel for action 

The String function vessel_for_action is used to identify the name of a vessel suitable for 

undertaking a given onsite replacement action (this_action) based on a list of failures sustained by 

the WEC (fail_arr). It also undertakes error handling to ensure that the onsite placements aspect of 

the model is operating as planned. The function is called by the array_object procedure attempt_ 

fix (section 7.13.4) and the wec_object procedures attempt_fix (section 7.14.4) and get_time_ 

until_repaired (section 7.14.29).  

The counter to track the number of failures requiring this_action (count_fails) is first initialised to 

zero. A for loop then considers each fault listed in the fail_arr with the identifier i. If the action 

required to correct that failure (i.e. get_action_reqd from the relevant fail_param_list object, 

section 7.3) matches this_action then 1 is added to the value of count_fails. For the first time 

count_fails is updated, the return String value vessel_name is set to be the name of the vessel 

required by that failure (i.e. get_vessel_reqd from the relevant fail_param_list object, section 7.3) 

and the variable count_vessel_match is initialised to 1. For every other value of count_fails 

identified throughout the loop, the variable temp_name is used to store the name of the vessel 

required by the failure under consideration. If temp_name is the same as the first vessel identified 

(vessel_name) then 1 is added to the value of count_vessel_match. This method ensures that 

failures requiring the same action also need the same vessel, as listed in the ‘Inputs’ spreadsheet 

(section 4.1.2). If count_fails is still equal to zero after the failures loop then an error message is 

displayed explaining that no failure requiring this_action has been found. Another error message is 

displayed if the two counters (count_fails and count_vessel_match) do not match explaining that 

two or more different vessels have been identified for the same action. In both cases, the user is 



 

Page 112 of 169 

 

prompted to exit the program (terminate_program, section 7.1.8). If the function is successful then 

vessel_for_action is set to be vessel_name to be read by the calling procedure. 

7.14.24 Return ID of vessel to use 

The Integer function ret_vessel_id_to_use is used to identify the ID of an available vessel of a given 

name (vessel_name) and utilises the vessel class module. It is called by the array_object subroutine 

attempt_ fix (section 7.13.4) as well as the wec_object procedures attempt_fix (section 7.14.4) and 

next_interval (section 7.14.14). 

The return value, vessel_for_op, is first initialised to a nominal negative number (-5) before a for 

loop considers each vessel (1 to num_vessels) listed in the ‘Vessels’ spreadsheet (section 4.2) with 

the identifier i. If the name of the vessel under consideration (i.e. vessel(i).get_name, section 7.8.2) 

matches the vessel_name and it is not already being used for a marine operation (i.e. if vessel(i) 

.get_state = not_in_use) and it passes the availability test (i.e. if vessel(i).check_availability = True, 

section 7.8.3) then the return value (vessel_for_op) is changed to be the vessel’s ID (i) and the for 

loop is ended. The function name, ret_vessel_id_to_use, is set to be vessel_for_op so it can be used 

by the calling procedures. 

7.14.25 Return action failures 

The Integer array function ret_action_fails is used to create a list of failure IDs which require a 

particular repair action (this_action) from the options in an existing list (fail_arr). It is called by the 

array_object procedure assign_lost_revenue_fails_ maint (section 7.13.8), the wec_object 

procedures attempt_fix (section 7.14.4) and next_interval (section 7.14.14), and the cost_benefit_ 

analysis function worth_repairing_WEC (section 7.12.4). 

The number of failures requiring this_action (count) is first initialised to zero before a for loop 

considers each failure in the fail_arr with the identifier i. If the action required to correct that 

failure (i.e. get_action_reqd from the relevant fail_param_list object, section 7.3) matches 

this_action then 1 is added to the value of count. The return array temp_arr is then re-sized to 

capture the new value of count and the entry is filled with the ID of the failure (i.e. fail_arr(i)). The 

function name, ret_action_fails, is set to be temp_arr so it can be used by the calling procedures. 

7.14.26 Get total costs 

The two Double functions get_total_parts_costs and get_total_other_costs are called by the cost_ 

benefit_analysis object (section 7.12) in order to obtain the total parts and other costs respectively 

that will be incurred when all the failures listed in fail_arr are repaired. The function achieve this by 

initialising the return value, this_sum, to zero before looping through all entries of the fail_arr and 

adding the relevant cost (obtained via the fail_param_list class module, section 7.3) to the value of 

this_sum. This value is then set to the function name for use by the calling procedures.  

7.14.27 Maximum severity of failures 

The function get_max_severity has the data type ‘severity’ (see section 7.1.1) and is called during 

the cost_benefit_analysis (section 7.12) in order to obtain the maximum severity of a list of 

sustained failures (fail_arr). It achieves this by initialising the return value (temp_sev) to minor 

before looping through all entries of the fail_arr with the identifier i. The get_severity function 

from the corresponding fail_param_list object (section 7.3) then identifies whether the failure is 



 

Page 113 of 169 

 

classed as intermediate. If so, then the value of temp_sev is changed to intermediate. However, if 

the identified severity is major then temp_sev is changed accordingly but the loop is then exited, 

thereby making sure that the maximum severity is found. The value of get_max_severity is set to 

be temp_sev for use by the calling procedures. 

7.14.28 Major and intermediate failures 

The Boolean functions major_failures and intermediate_failures are utilised by the order_this_list 

procedure in the cost_benefit_analysis object (section 7.12.5) in order to identify if there are any 

failures in a list (fail_list) with the classification major and intermediate respectively. In both 

functions, the return value temp_bool is initialised to False, saying that no such failures have been 

found in the list. Each failure is then considered in a for loop. If the severity of the failure matches 

that indicated by the function name (i.e. major or intermediate) then temp_bool is changed to True 

and the loop is ended.  The function name is then set to be temp_bool so it can be used by the 

calling procedure (order_this_list). 

7.14.29 Time until repaired 

The function get_time_until_repaired is used to calculate the number of intervals it takes to 

undertake a certain marine operation or offsite repair/maintenance task and also updates the total 

vessel cost incurred during the operation. It is called by the cost_benefit_analysis procedures 

worth_retrieving_WEC (section 7.12.3), worth_repairing_WEC (section 7.12.4) and order_this_list 

(section 7.12.5). The function is sent the argument this_interval (the current interval), fail_arr (a list 

of sustained failures), the vessel object, condition (a identifier of the type of operation being 

assessed) and this_action (a String variable indicating the action required, only applicable if onsite 

replacement of parts is being assessed). The total_vessel_cost is also sent to the function as a ByRef 

type, meaning that it can be modified by get_time_until_repaired. The condition variable is sent to 

the function as either "retrieval", indicating that the WEC under assessment would need to be 

retrieved for repairs and maintenance at the O&M base, or “onsite”, saying that the failures could 

be corrected by replacing the relevant parts whilst the WEC is onsite (i.e. offshore). 

If the condition is “retrieval” then the function is used calculate the number of intervals from the 

time the vessel is set for the retrieval operation until the WEC is ready to be installed following 

offsite repair. The ID of the vessel to use for the operation (vessel_id) is identified by the find_ 

install_vessel_id function (section 7.14.31). The length of the retrieval operation in hours 

(fuel_hours) is then calculated by summing the travel times of the vessel from the O&M base to 

site (without towing, get_free_travel_time) and back again (with towing, get_tow_time) using the 

relevant vessel object (i.e. vessel(vessel_id), section 7.8.2), as well as the returned value of the 

function longest_time_offshore (section 7.14.7). The value of fuel_hours is then rounded up to the 

whole time_step and stored in the variable wndo_length. The vessel costs incurred during the 

retrieval operation (temp_cost) are calculated by utilising the functions calc_hire_fees_for_op 

(section 7.8.6) and calc_fuel_for_op (section 7.8.7) from the vessel object. The number of intervals 

the WEC will need to spend offsite for repairs and/or maintenance (ints_offsite) is calculated by the 

function calc_intervals_offsite (section 7.14.9), assuming no delays occur. The return value 

temp_time is set to be the wndo_length converted into intervals (i.e. by dividing by time_step) plus 

the value of ints_offsite. 

If the condition is “onsite” then the function is used to calculate the number of intervals from the 

time the vessel sets off for site until the time it returns to the O&M base, having completed the 



 

Page 114 of 169 

 

onsite replacement of parts task. The name of the vessel required for this_action (vessel_name_ 

reqd) is identified by the function vessel_for_action (section 7.14.23). The ID of a vessel with this 

name (vessel_id) is the identified in a for loop from 1 to the number of vessels listed (num_vessels). 

Using the vessel object for the vessel_id, the length of the operation in hours (fuel_hours) is 

calculated by summing two vessel trips (without towing, get_free_travel_time, section 7.8.2) and 

the value obtained from the function longest_time_offshore (section 7.14.7). As before, this 

enables the vessel costs (temp_cost) to be identified by utilising the vessel functions calc_hire_ 

fees_for_op (section 7.8.6) and calc_fuel_for_op (section 7.8.7). The value of fuel_hours is rounded 

up to the nearest whole interval (wndo_length) enabling the return value (temp_time) to be set to 

the number of intervals is takes to complete the marine operation (i.e. wndo_length / time_step) 

Error handling is in place in the value of condition is invalid. If the function is a success then the 

total_vessel_cost is returned to the calling procedure as temp_cost, and get_time_until_repaired 

becomes temp_time. 

7.14.30 Installation time 

The function get_install_time is used to calculate the number of intervals it would take to complete 

an installation operation of a WEC and also updates the vessel cost incurred. It is called by the 

cost_benefit_analysis procedures worth_retrieving_WEC (section 7.12.3) and order_this_list 

(section 7.12.5). The function is sent the arguments this_interval (the current interval), the vessel 

object and total_vessel_cost (as a ByRef type so that it can be modified).  

The return value of the vessel cost (temp_cost) is first initialised to be the value of total_vessel_ 

cost sent by the calling procedure. The ID of the vessel to use for the operation (vessel_id) is then 

identified by the find_install_vessel_id function (section 7.14.31). The length of the installation 

operation in hours (fuel_hours) is calculated by summing the travel times of the vessel from the 

O&M base to site (with towing, get_tow_time) and back again (without towing, get_free_travel_ 

time) using the relevant vessel object (i.e. vessel(vessel_id), section 7.8.2), as well as the value of 

install_hours defined during the start subroutine (section 7.14.1). The value of fuel_hours is then 

rounded up to the whole time_step and stored in the variable wndo_length. The vessel costs 

incurred during the installation operation (temp_cost) are updated by utilising the functions 

calc_hire_fees_for_op (section 7.8.6) and calc_fuel_for_op (section 7.8.7) from the vessel object. 

The return value temp_time is then set to be the wndo_length converted into intervals (i.e. by 

dividing by time_step). The total_vessel_cost is returned to the calling procedure as temp_cost, and 

the function name (get_install_time) becomes temp_time. 

7.14.31 Find installation vessel ID 

The function find_install_vessel_id is used to obtain the ID of any vessel whose name matches the 

install_vessel_name defined during the wec subroutine start (section 7.14.1). It is utilised by the 

two procedures get_time_until_repaired and get_install_time described previously in sections 

7.14.29 and 7.14.30 respectively. The function is sent the vessel object as an argument so that it 

can access the function get_name (section 7.8.2). A for loop considers each vessel listed in the 

‘Vessels’ spreadsheet (i.e. from 1 to num_vessels) using the identifier i. If the name of the vessel 

under consideration matches the value of install_vessel_name then the return value temp_id is set 

to the ID of that vessel (i.e. i) and the for loop is ended. The function name find_install_vessel_id is 

set to be temp_id to be recognised by the calling procedures. 



 

Page 115 of 169 

 

7.14.32 Intervals to next maintenance 

The function ints_to_next_maint is used to calculate the number of intervals until the WEC will be 

due for its next scheduled maintenance event. It is called by the cost_benefit_analysis procedures 

worth_retrieving_WEC (section 7.12.3) and worth_repairing_WEC (section 7.12.4). It is sent the 

date information in the form irun (current year) and current_int_long (the current interval 

independent of the year. It is also sent the number of intervals the WEC will not be operating at 

site (time_not_onsite), which corresponds to the time it takes to carry out the marine operation (as 

well as the offsite work, if applicable).  

The function is called for two different cases; one assessing the scenario where the WEC is 

repaired, and the other assessing the scenario where the WEC is left operating at site. These cases 

are identified by the condition being set as either “after repair” or “if left” respectively. If the 

condition is “after repair” then the interval to start the calculations from (long_condition_interval) 

is identified as the current_int_long plus the time_not_onsite. If condition is “if left” then the 

time_not_onsite is ignored so that long_condition_interval is simply the value of current_int_long. 

The return value temp_time is first initialised to be the total number of intervals in the project 

lifetime (i.e. no_intervals multiplied by no_run). Each WEC-based maintenance event (listed in 

wec_maint_cat, see section 7.14.1) is then considered in a for loop using the identifier imaint. The 

time calculated by the previous entry (or the initialised value if this is the first entry in the loop) is 

stored in the variable prev_time by setting it to temp_time. The interval in the year where that 

maintenance event will be due, as defined by the season specified by the user on the ‘Inputs’ 

spreadsheet (section 4.1.3), is identified using the function get_maint_interval_in_year. This 

function uses the ID of the maintenance event (this_cat) to obtain the value of get_time_of_year 

from the relevant maint_param_list (section 7.4). It then converts this into interval format by 

identifying the first day of the first month of that season (based on the meteorological definition: 

winter is 1st December, spring is 1st March, summer is 1st June, and autumn 1st September). The 

value returned by the function get_maint_interval_in_year is stored in the variable maint_due_ 

interval. The function get_maint_interval_in_year is also used by the procedure determine_fix in 

the array_object class module, as described in section 7.13.3. 

The variable maint_checker is then used to see if that maintenance category (imaint) has not 

already been completed in that year. This is indicated if the relevant entry in maint_checker (i.e. 

maint_checker(irun, imaint)) is zero. The current interval, when converted into a year-dependent 

interval (i.e. current_int_long - ((irun - 1) * no_intervals)), should be less than the value of maint_ 

due_interval. An error message is displayed if this is not the case. Otherwise, the variable long_ 

condition_interval is also checked to see if the maintenance category will become due during the 

time spent undertaking the marine operation and repair. If so, then the return value (temp_time) is 

set to -5, telling the calling procedures to delay the repair until maintenance is due. If not then the 

temp_time is simply set to be the number of intervals from the current interval (long_condition_ 

interval, converted into a year-dependent format) until the maint_due_ interval. 

However, if the relevant entry of maint_checker is equal to 1 then either that maintenance event 

has already been completed in the year irun, or it was not scheduled to be undertaken in that year 

anyway. The year in which long_condition_interval occurs is calculated by dividing it by the number 

of intervals in a year (no_intervals) and rounding up to the nearest whole number, giving the value 

of temp_year. If the current year (irun) is the last year of the project lifetime (no_run), or if the 



 

Page 116 of 169 

 

repair will go beyond the project lifetime (i.e. if temp_year > no_run), then the repair is delayed 

(temp_time = -5). If neither of these conditions is met then the next year when maintenance will be 

due (maint_due_year, initialised as zero) is identified using a for loop. The loop checks all remaining 

years of the project lifetime (from irun+1 to no_run, with the identifier i) and sets maint_due_year 

to be that year if the relevant entry of maint_checker (i.e. maint_checker(i, 1)) is zero. If the value 

of maint_due_year is still returned as zero then that maintenance event will not be due again 

before the project lifetime ends. In this case, the interval when the WEC will be installed or finished 

onsite repairs (install_int, in year-dependent format) is used to calculate the number of interval left 

until the project ends (i.e. (no_intervals - install_int) plus the number of years left multiplied by 

no_intervals). This is then set to the return value temp_time. If the maintenance event will be due 

before the project ends (i.e. maint_due_year is not zero), however, then the install_int value is 

used to calculate the number of intervals from then until the maintenance event is due (i.e. 

(maint_due_interval - install_int) + (no_intervals * (maint_due_year - temp_year))), and is stored as 

temp_time. Before the next WEC-based maintenance event is considered, the custom function min 

(section 7.1.7) is used with the arguments prev_time and temp_time, and the minimum value then 

becomes the new temp_time. After all maintenance events have been considered, the function 

name (ints_to_next_maint) is set to the value of the temp_time for use by the calling procedures. 

7.14.33 Number of retrieval failures 

The function num_retrieval_fails is used to calculate the number of failures in a given list (fail_arr) 

which require the action “Retrieve WEC”. It is called by the procedure assign_lost_revenue_fails_ 

maint in the array_object class module (section 7.13.8). The function loops through each of the 

failures in fail_arr and uses the returned value from get_action_reqd in the relevant fail_param_list 

object (section 7.3) to identify if the failure needs the WEC to be retrieved (i.e. “Retrieve WEC”). If 

so then the return value (temp_ret, previously initialised as zero) is updated by adding 1. The 

function name (num_retrieval_fails) is set to be temp_ret for use by the calling procedures. 

7.14.34 This maintenance ready 

WEC-based maintenance events are defined in the start subroutine of the wec_object class module 

(section 7.14.1). As described, the IDs of these events are stored in the variable array wec_maint_ 

cat, with the arrays maint_due and maint_checker controlling when the tasks are to be carried out. 

The variable set_for_maint has the data type yes_no (section 7.1.1) and allows the model to 

control the user-defined amount of space that can be used solely for scheduled maintenance 

activities (specified on the ‘Inputs’ spreadsheet, section 4.1.1). Other procedures and class modules 

can utilise the following five functions in the wec_object to access information about the status of 

one or all WEC-based maintenance categories: 

 this_maint_ready  - Boolean, True if a given event is ready to be undertaken 

 any_maint_ready  - Boolean, True if any events are ready to be undertaken 

 get_num_wec_maints_ready - Integer, the number of events ready to be undertaken 

 any_maint_due   - Boolean, True if any events are due 

 get_num_wec_maints_due - Integer, the number of events due 

The Boolean function this_maint_ready is used throughout the model code to identify if a given 

WEC-based maintenance event (this_cat) is scheduled for maintenance at the current interval and 

if there is enough space at the O&M base for another WEC to undergo maintenance. Error handling 

is included in the function to ensure that the given category (this_cat) is relevant to the WEC. The 



 

Page 117 of 169 

 

Boolean value of this_maint_ready is returned to the calling procedure as True if the relevant entry 

in maint_due is 1 (i.e. saying that the event is due) and the value of set_for_maint is yes. If one or 

both of these conditions is not met then the function returns False. 

The Boolean function any_maint_ready is used to find if any of the WEC-based maintenance events 

are ready (or are being) carried out. It achieves this by looping through each entry in wec_maint_ 

cat and changing the return value to True if the value of the this_maint_ready function for that 

event is True. If no maintenance events ready to be undertaken are found then the any_maint_ 

ready function returns False. 

The function get_num_wec_maints_ready operates in very much the same way as any_maint_ 

ready described in the previous paragraph. The difference is that the return value (temp_int) is 

initialised as zero and then added to for every category returned as True by this_maint_ready. 

The function any_maint_due is used to identify whether any WEC-based maintenance events are 

due to be undertaken, without considering the amount of space available at the O&M base. It 

achieves this by looping through all the WEC-based maintenance events and changing the return 

value to True if any of them have the relevant entry in maint_due set as 1. If all the maintenance 

events have maint_due set as zero then the return value remains as False. 

The function get_num_wec_maints_due operates in very much the same way as any_maint_due 

described in the previous paragraph. The difference is that the return value (temp_int) is initialised 

as zero and then added to for every category whose maint_due entry is 1. 

7.14.35 Any maintenance delayed 

The Boolean function any_maint_delay is used to identify if any WEC-based maintenance events 

are being delayed due to a lack of space at the O&M base specifically for WECs undergoing 

maintenance only. The return value temp_bool is first initialised to False, before each WEC-based 

maintenance event is considered in a for loop with the identifier i. If the event is due (i.e. if maint_ 

due(i) = 1) but the space at the O&M base restricts the work (i.e. if set_for_maint = no) then 

temp_bool is set to True. After the loop, the function name any_maint_delay is set to temp_bool 

for use by the calling procedure. 

7.14.36 Get functions 

There are a number of functions throughout the wec_object class module which are used by other 

objects purely to obtain information about that specific WEC. The names of these functions all start 

with ‘get_’ and are as follows: 

 get_state    - returns the state of the WEC 

 get_maint_due   - obtains the maint_due entry of a given this_entry 

 get_wec_power   - gets wec_power (after checking rounding errors) 

 get_fail_list   - gets the wec_fail_list object (known as wec_fail_arr) 

 get_wec_output_list  - gets the wec_output_list object (known as wec_output_arr) 

 get_delay_status   - gets the delay_status 

 get_wec_maint_cat  - gets the wec_maint_cat entry of a given this_entry 

 get_num_wec_maint_cats - gets the upper boundary of wec_maint_cat 

 



 

Page 118 of 169 

 

7.15 TECHNICIANS 

The technicians_object class module is created by the array_object (and known as technicians) in 

order to set up and control the workforce arrangements at the O&M base. A number of variables 

are used throughout the object: 

 tech_available()  - Boolean, contains a list of technicians’ availability 

 annual_labour_cost - annual labour cost of O&M base technicians 

 techs_work_time_remaining() – a list of the number of intervals each technician has left on 

a task 

 techs_output_arr - a list of techs_output objects 

 contractor_day_rate - daily hire rate for an external contractor 

 contractor_int_rate - hire rate for an external contractor per interval 

 contractors_on_hire() - Boolean, whether contractors are on hire in each interval and year 

In addition, the constant values (Const) totals_row and overheads_col are used to identify the 

position in the ‘Labour’ spreadsheet (section 4.3) of the row containing the totals of personnel and 

salary and the column containing the overheads multiplier respectively.  

7.15.1 Start 

The subroutine start is called by the procedure of the same name in the array_object class module 

(section 7.13.1) in order to initialise the technicians object. The value of the annual_labour_cost is 

calculated by the product of total salaries of the O&M base technicians and the overheads 

multiplier, both specified on the ‘Labour’ spreadsheet (section 4.3). The contractor_day_rate is 

read from the relevant cell and converted into a fee per interval (contractor_int_rate) by dividing 

by the number of intervals in a day (i.e. 24 / time_step). It should be noted that if the labour_sheet 

is modified then the cells to read the information from here must also be changed accordingly. 

The number of technicians at the O&M base (num_technicians) was identified during the 

procedure setup_class (see section 7.2.4) for use throughout the model. It is used here to re-size 

the arrays tech_available and techs_work_time_remaining from 1 to num_technicians, so that 

information about an individual O&M base technician can be accessed. A for loop then considers 

each technician with the identifier i and the relevant entries in these arrays are initialised to say 

that each technician is available and not undertaking work (i.e. tech_available(i) = True and techs_ 

work_time_remaining(i) = 0). 

The Global Boolean variable short_term_contracts_enabled is then initialised to False, saying that 

external contractors cannot be hired. This is only changed to True if the relevant cell in the ‘Labour’ 

spreadsheet (section 4.3) reads “yes”. The variable contractors_on_hire is then re-sized to be a 2D 

array, with the first dimension providing space for information about every interval in a year (i.e. 

from 1 to no_intervals) and the second dimension for every year in the project lifetime (i.e. from 1 

to no_run). A nested loop then considers each interval (identifier i) in each year (identifier irun) and 

initialises the relevant entry in contractors_on_hire (i.e. contractors_on_hire(i, irun)) to False. 

Finally, the subroutine creates and initialises an output object to keep track of the contractor fees 

incurred in each year of the project lifetime, as well as a zero entry to contain averaged data. The 

techs_output_arr variable is re-sized as a 2D array (i.e. techs_output_arr(0 To no_run, 1 To 1)) 

before a nested for loop considers each entry in turn. A New techs_output object is assigned to the 

relevant entry of techs_output_arr and its start subroutine is called (section 7.21). It is clearly 



 

Page 119 of 169 

 

unnecessary to have techs_output_arr as a 2D array when the second dimension only has one 

entry. However, it has been included here in order to provide the framework to output information 

about every O&M base technician if required by future users of the model. 

7.15.2 Add technicians working 

The subroutine add_tech_working is used to update the two arrays tech_available and techs_ 

work_time_remaining for a given O&M base technician (this_technician). It is called by the array_ 

object subroutine attempt_fix (section 7.13.4) and the wec_object procedures attempt_fix (section 

7.14.4), next_interval (section 7.14.14), assign_offsite_fail_techs and assign_offsite_maint_techs 

(section 7.14.18). The subroutine should only be called when this_technician has already been 

identified as available for work, so error handling displays a message if the relevant value of tech_ 

available is False. Otherwise, the entry is set to be False, saying that the technician is now busy. An 

available technician should also have the relevant entry in techs_work_time_remaining set to zero, 

otherwise an error message will be displayed. If the value in techs_work_time_remaining is zero, 

then it is reset to be the number of working_intervals sent by the calling procedure. 

7.15.3 Add contractor fees 

The subroutine add_contractor_fees is used to update the output information whenever an 

external contractor is required for marine operations, repairs or maintenance tasks. It is called by 

the array_ object subroutine attempt_fix (section 7.13.4) and the wec_object procedures 

attempt_fix (section 7.14.4), next_interval (section 7.14.14), assign_offsite_fail_techs and 

assign_offsite_maint_techs (section 7.14.18). The subroutine is sent date information in the form 

irun (the current year) and this_interval (current interval in irun). It is also sent the number of 

intervals that contractors will be hired for (num_ints) as well as an identifier start_next (with the 

data type yes_no). The add_contractor_fees subroutine acts as a control by first calling another 

technicians subroutine, update_contractors_on_hire, with all the arguments described. It then calls 

the add_contractor_ fees procedure in the techs_output_arr object relevant to irun (section 7.21.5) 

using the argument of contractor_int_rate multiplied by num_ints. 

The subroutine update_contractors_on_hire is used to change the relevant entries of the 

contractors_on_hire array to True whenever external contractors will be used. If the calling 

procedure of add_contractor_fees is the wec subroutine next_interval, then the identifier 

start_next is set as yes, saying that the contractors will be on hire starting at the next interval. This 

is accounted for by making the final interval (end_int) in every other case equal to this_interval plus 

num_ints minus 1. The minus 1 is not needed when next_interval is the calling procedure. The 

subroutine then considers every interval from this_interval to end_int in a for loop with the 

identifier i. It is possible that the interval under consideration will go into the next year (i.e. irun 

plus 1). If that is not the case then the variables array_interval and array_year are set to i and irun 

respectively. If the interval does go into the next year, however, then array_interval becomes i 

minus no_intervals (the number of intervals in a year) and array_year is set to irun plus 1. In the 

rare case that the considered interval goes beyond the project lifetime, array_interval is set to 

no_intervals and array_year becomes irun (i.e. the last interval of the project). Before the next 

interval is considered or the loop ends, the relevant entry in contractors_on_hire (i.e. contractors_ 

on_hire(array_interval, array_year)) is set to True. 



 

Page 120 of 169 

 

7.15.4 Next interval 

The subroutine next_interval is called by the procedure of the same name in the array_object class 

module (section 7.13.7). It is used to set the technicians object up for the coming interval. 

A for loop considers each O&M base technician in turn (i.e. from 1 to num_technicians) with the 

identifier i. The relevant entry in the techs_work_time_remaining array is updated by subtracting 

one, saying that the technician has worked one more interval (if busy). The value in techs_work_ 

time_remaining is set to zero if this makes it become a negative number. If the technician under 

consideration is not working at the current interval (i.e. techs_work_time_remaining(i) = 0 and 

tech_available(i) = False) then the relevant entry in the Boolean array tech_available is changed to 

True, making that technician available for work once more. 

7.15.5 Print interval 

The subroutine print_interval is called by the procedure of the same name in the array_object class 

module (section 7.13.12) in order to print output information about the technicians to the ‘run 

sheets’ (section 6.2) is a ‘full run’ process is taking place (section 5.2). It is sent the name of the 

output sheet (run_sh), the current year (irun), the current interval (this_interval) and the first 

column to start printing (techs_start_col). 

If this_interval is the first interval in the year then the section header “Technicians” is printed. A for 

loop then considers each of the O&M base technicians (i.e. from 1 to num_technicians) with the 

identifier i. Again, if this_interval is 1 then the sub-section header is printed in the correct column 

(i.e. techs_start_col + i – 1), indicating the ID of that technician (i). If the technician under 

consideration is available at that interval (i.e. if tech_available(i) = True) then the relevant cell is 

made to read “Free” and is filled green. Otherwise, it reads “Busy” and is filled red. Following the 

O&M base technicians loop, the contractor information is printed. The section header reads 

“Contractors on hire?” in the last column (techs_start_col + num_technicians). If the relevant value 

of contractors_on_hire for the current date is True then the cell reads “yes” and is filled red. 

Otherwise, it reads “no” and is filled green. 

7.15.6 Get functions 

Information from the technicians object can be obtained by other class modules using the following 

functions: 

 get_tech_availability  - the value of the tech_available array given this_tech 

 get_annual_labour_cost - the annual_labour_cost calculated in start 

 get_num_techs_avail  - loops through the O&M base technicians and calculates 

how many of them are available  

 get_techs_output  - the techs_output_arr object given the first dimension i 

7.15.7 Output procedures 

The procedures draw, run_title, calc_end, post_process_contractor_fees are used to produce the 

technicians-related output information printed to the ‘Results’ spreadsheet (section 6.1). They are 

described in detail in section 7.21. 

 



 

Page 121 of 169 

 

7.16 FAILURES OBJECTS 

The class modules array_fail_list and wec_fail_list control the list of array-based and wec-based 

failures respectively which have been simulated at any given interval. As has been described 

throughout sections 7.13 and 7.14, the procedures in these objects are called in order to update 

and obtain the list of sustained failures. The objects utilise the class modules array_fail and 

wec_fail respectively for each of the suffered failures. The class module failure_no_object is also 

used in order to identify the classifications of the sustained faults. Some of these failure objects 

have common variables: 

 fail_no  - Integer, number of failures in the list 

 fail_arr()  - List of array_fail or wec_fail objects 

 fail_number - A failure_no_object class module 

 fail_ID  - ID of fault category 

7.16.1 Array failures list 

The class module array_fail_list is used throughout the array_object and is referred to as array_ 

fail_arr (see section 7.13). It controls the list of array-based failures sustained. 

The subroutine start is called by the procedure of the same name in array_object (section 7.13.1), 

as well as the next_interval procedure (section 7.13.7), in order to reset the list. The total number 

of failures, fail_no, is set to zero. The object controlling the classification information of the failures 

is then created and initialised by setting fail_number to be a New fail_no_object and calling its start 

procedure (section 7.16.5). 

The subroutine add_fail is called during the determine_failure procedure in array_object (section 

7.13.2) in order to update the list with the sustained failure. The ID of the failure is sent as fail_ 

type. The number of sustained failures, fail_no, is updated by adding 1. The list of failures, fail_arr, 

is then re-sized from 1 to the current value of fail_no, but keeping the existing values (i.e. ReDim 

Preserve). The new entry of the list (i.e. fail_arr(fail_no)) is set to be a New array_fail object and 

the ID of the failure (fail_type) is sent to its start procedure (section 7.16.2). The severity of the 

sustained failure is then read using the get_severity function in the relevant object (i.e. fail_param_ 

list.get_fail_param(fail_type), section 7.3) and is stored in the variable sev (with the data type 

severity, see section 7.1.1). The fail_number object is then updated by sending the value of sev to 

its count procedure (section 7.16.5). 

The function get_fail_arr_id is used to return a list of all the array-based failures which have been 

sustained. It is called by several procedures throughout the array_object class module (see section 

7.13) whenever the list of failures is required. If there are no failures (i.e. if fail_no is zero) then the 

first and only entry of the return value (i.e. arr(1)) is set to be -5. Otherwise, the return list is re-

sized from 1 to the value of fail_no, and a for loop fills each entry (i.e. arr(i)) with the ID of that 

failure (i.e. fail_arr(i).get_fail_id, section 7.16.2). The function name, get_fail_arr_id, is set to be 

the value of arr so it can be recognised by the calling procedures. 

The function string_fail is called by the print_interval subroutine in the array_object class module 

(section 7.13.12). It is used to create a String list (i.e. text) of all the sustained array-based failures. 

The String return value (string_fail_loc) is first initialised to say “fail :”. If fail_no is greater than zero 

then each sustained failure is considered in turn using a for loop (from 1 to fail_no). The value of 

string_fail_loc is updated each time by adding the ID of that failure (i.e. fail_arr(i).get_fail_id, 



 

Page 122 of 169 

 

section 7.16.2). Formatting is taken into account by adding a comma and a space unless the last 

failure in the list is being considered. The function name, string_fail, is set to be the value of string_ 

fail_loc so it can be recognised by the calling procedure. 

Procedures in other class modules can access the total number of sustained array-based failures 

(fail_no) by calling the function get_total_fails. They can also access the object containing the 

severity of the sustained failures (fail_number) using the function get_fail_number. 

7.16.2 Array failures 

The array_fail class module is used by the array_fail_list object (section 7.16.1) to store the ID of 

an array-based failure which has been sustained. The start subroutine takes the argument of 

fail_type and assigns it to the variable fail_ID. The function get_fail_id can then be called by the 

array_fail_list object in order to access the value of fail_ID.  

7.16.3 WEC failures list 

The class module wec_fail_list is used throughout the wec_object and is referred to as wec_fail_arr 

(see section 7.14). It controls the list of wec-based failures sustained. 

The subroutine start is called by the procedure of the same name in wec_object (section 7.14.1), as 

well as the next_interval procedure (section 7.14.14), in order to reset the list. The total number of 

failures, fail_no, is set to zero. The object controlling the classification information of the failures is 

then created and initialised by setting fail_number to be a New fail_no_object and calling its start 

procedure (section 7.16.5). 

The subroutine add_fail is called during the determine_failure procedure in wec_object (section 

7.14.2) in order to update the list with the sustained failure. The ID of the failure is sent as fail_ 

type. The number of sustained failures, fail_no, is updated by adding 1. The list of failures, fail_arr, 

is then re-sized from 1 to the current value of fail_no, but keeping the existing values (i.e. ReDim 

Preserve). The new entry of the list (i.e. fail_arr(fail_no)) is set to be a New wec_fail object and the 

ID of the failure (fail_type) is sent to its start procedure (section 7.16.4). The severity of the 

sustained failure is then read using the get_severity function in the relevant object (i.e. fail_param_ 

list.get_fail_param(fail_type), section 7.3) and is stored in the variable sev (with the data type 

severity, see section 7.1.1). The fail_number object is then updated by sending the value of sev to 

its count procedure (section 7.16.5). 

The function get_fail_arr_id is used to return a list of all the wec-based failures which have been 

sustained. It is called by several procedures throughout the wec_object class module (see section 

7.14) whenever the list of failures is required. If there are no failures (i.e. if fail_no is zero) then the 

first and only entry of the return value (i.e. arr(1)) is set to be -5. Otherwise, the return list is re-

sized from 1 to the value of fail_no, and a for loop fills each entry (i.e. arr(i)) with the ID of that 

failure (i.e. fail_arr(i).get_fail_id, section 7.16.4). The function name, get_fail_arr_id, is set to be 

the value of arr so it can be recognised by the calling procedures. 

The function string_fail is called by the print_interval subroutine in the wec_object class module 

(section 7.14.20). It is used to create a String list (i.e. text) of all the sustained wec-based failures. 

The String return value (string_fail_loc) is first initialised to say “fail :”. If fail_no is greater than zero 

then each sustained failure is considered in turn using a for loop (from 1 to fail_no). The value of 

string_fail_loc is updated each time by adding the ID of that failure (i.e. fail_arr(i).get_fail_id, 



 

Page 123 of 169 

 

section 7.16.4). Formatting is taken into account by adding a comma and a space unless the last 

failure in the list is being considered. The function name, string_fail, is set to be the value of string_ 

fail_loc so it can be recognised by the calling procedure. 

Procedures in other class modules can access the total number of sustained wec-based failures 

(fail_no) by calling the function get_total_fails. They can also access the object containing the 

severity of the sustained failures (fail_number) using the function get_fail_number. 

The subroutine update_fail_arr is called by the wec procedure next_interval (section 7.14.14) when 

onsite repairs have taken place. As described throughout section 7.14, the model assumes that 

only one part can be replaced onsite during a single marine operation. Therefore, it is possible that 

the list of sustained wec-based failures will only be partially cleared. The calling procedure sends 

update_fail_arr a list of the failures which have been corrected (fails_to_remove). The subroutine 

starts by storing the list of all sustained failures in the variable current_fail_arr. It then clears the 

list by calling the start subroutine described previously in this section. Each failure sustained by the 

failure is then considered in a for loop from 1 to the number of entries in current_fail_arr with the 

identifier i. The ID failure under consideration (current_fail) is obtained from the list (i.e. current_ 

fail_arr(i)) and a counter (count) is initialised to zero. A nested for loop then considers each entry in 

the fails_to_remove list using the identifier k. If the failure under consideration (current_fail) is in 

the list (i.e. if fails_to_remove(k) = current_fail) then the value of count is updated by adding 1. If 

count is still zero after all entries of fails_to_remove have been assessed then the current_fail is 

once again added to the list of sustained wec-failures by calling the subroutine add_fail. 

7.16.4 WEC failures 

The wec_fail class module is used by the wec_fail_list object (section 7.16.3) to store the ID of an 

wec-based failure which has been sustained. The start subroutine takes the argument of fail_type 

and assigns it to the variable fail_ID. The function get_fail_id can then be called by the wec_fail_list 

object in order to access the value of fail_ID. 

7.16.5 Failure number object 

The class module fail_no_object is used to store classification information about the sustained 

array-based and wec-based failures. It stores the number of occurrences of major (major_count), 

intermediate (intermediate_count) and minor failures (minor_count). The start subroutine 

initialises each of these counters by setting them to zero. 

The subroutine count is sent the severity of a failure in the variable sev, with the data type severity 

(section 7.1.1). An if-else set of conditions then identifies whether sev is major, intermediate or 

minor and updates the relevant counter appropriately by adding 1.The values of the counters can 

be accessed at any time by using the functions ret_major_count, ret_intermediate_count and 

ret_minor_count.  

 

 

 



 

Page 124 of 169 

 

7.17 ARRAY OUTPUTS LIST 

The class module array_output_list is used to update, control and calculate the outputs related to 

the array as a whole. The following variable names are used throughout the object: 

 num_wecs   - the number of WECs in the array 

 array_output()  - a list of wec_output objects used to store array outputs 

 all_wecs_output() - a list of wec_output_list objects used to calculate outputs from all 

WECs 

 total_parts_costs() - a list of the total parts costs incurred in each year of the project 

 total_other_costs() - a list of the total other costs incurred in each year of the project 

 total_inspection_costs() - a list of the total inspection costs incurred in each year of the 

project 

7.17.1 Start 

The subroutine start is called by the procedure of the same name in the array_object class module 

(section 7.13.1) in order to setup and initialise the array-based output objects for each year of the 

project lifetime. It is sent the number of WECs in the array (num_wecs_loc) as an argument which 

is then set to be the value of num_wecs. 

The list of output objects, array_output, is then re-sized from zero to the number of years in the 

project lifetime (no_run). The zero entry (i.e. array_output(0)) is used to store the average values 

across the entire project lifetime. Each entry is then considered in a for loop using the identifier i. 

Each entry (i.e. array_output(i)) is then set to be a New wec_output object and its subroutine start 

is called (section 7.19.1). 

Note: the class module wec_output is used to store output information for array-based and wec-

based aspects. The calling procedure determines which aspect is under consideration. 

7.17.2 Add failure and maintenance costs 

The subroutines fail_costs and add_maint_costs are called by the next_interval procedure in the 

array_object (section 7.13.7) in order to update the outputs costs for repaired failures and 

completed maintenance tasks respectively.  

The fail_costs subroutine is sent the current year of the simulation (irun) and a list of the IDs of 

repaired failures (fail_arr_id). It then sends fail_arr_id to the costs_add subroutine of the correct 

array_output object for that value of irun in order to update the incurred costs (section 7.19.3). 

The add_maint_costs subroutine is sent the current year of the simulation (irun) and the ID of the 

completed array-based maintenance task (maint_cat). It then sends maint_cat to the maint_costs_ 

add subroutine of the correct array_output object for that value of irun in order to update the 

incurred costs (section 7.19.3). A list of maintenance tasks is not required here because only one 

array-based maintenance task is coded for in the released version of the O&M mode, as described 

in section 7.13.1. 

7.17.3 Add availability 

The subroutine avail_add is called by the next_interval procedure in the array_object (section 

7.13.7) in order to update the output information for wave farm availability. It is sent the current 



 

Page 125 of 169 

 

year of the simulation (irun) and the current power capacity of the array (power, between 0 and 1). 

The subroutine updates the average power incurred in that year by using the set_avail subroutine 

of the correct array_output object for that value of irun (section 7.19.2). The new average 

availability is calculated by obtaining the previous average availability (get_avail) and adding the 

current power capacity divided by the number of intervals in a year (no_intervals). 

7.17.4 Draw 

The draw subroutine is called at the end of a simulated array lifetime by the post_process 

procedure in the array_object class module (section 7.13.13) in order to control the printing of 

array-based outputs to the ‘Results’ spreadsheet (section 6.1). The subroutine is sent the reference 

IDs of the row and column (col) positions to start printing the information. The annual average 

output values are calculated by calling the subroutine calc_end (section 7.17.5). The output 

information for each year of the project lifetime is then printed by calling the following procedures 

in order, updating the row to start printing each time (section 7.17.6): 

 post_process_avail 

 post_process_part_cost 

 post_process_other_cost 

 post_process_inspection_cost 

In addition, the draw subroutine also prints the total costs incurred in every year, including array-

based aspects as well as all wec-based aspects. This is achieved by calling the subroutines set_ 

total_parts_costs, set_total_other_costs and set_total_inspection_costs (section 7.17.8). 

7.17.5 Calculate end 

The subroutine calc_end is called by draw (section 7.17.4) in order to fill the zero entry of the 

array_output list (i.e. array_output(0)) with the values of array availability, parts costs, other costs 

and inspection costs, averaged across the lifetime of the project. Each year is considered in turn 

using a for loop with the identifier i, from 1 to no_run. For each year, the relevant ‘set’ subroutines 

(e.g. set_avail etc.) in the array_output(0) object (section 7.19.2) are called. The argument sent in 

each case is the current average value (e.g. get_avail) plus the value for the year under 

consideration (e.g. array_output(i).get_avail) divided by no_run. 

7.17.6 Post process procedures 

The four ‘post process’ subroutines in array_output_list print the annual array-based output 

information for availability (post_process_avail), parts costs (post_process_part_cost), other costs 

(post_process_other_cost) and inspection costs (post_process_inspection_cost). In each case, the 

header “Array” is printed in the appropriate cell. Each year of the project lifetime is considered in a 

for loop with the identifier i. The output information for that year is then obtained from the 

relevant array_output object (i.e. array_output(i), section 7.19.2) and printed to the appropriate 

cell (i.e. col + i). In the cost-based subroutines, the output_val_divider is used to convert the 

information into the required format defined by the user (section 7.2.4). Once the information is 

printed for every year, the annual average values calculated in calc_end (section 7.17.5) are also 

printed to the ‘Results’ spreadsheet. 



 

Page 126 of 169 

 

7.17.7 Draw all WECs 

The subroutine draw_all_wecs is called at the end of a simulated array lifetime by the post_process 

procedure in the array_object class module (section 7.13.13). It is called after the output 

information for each WEC has been printed (section 7.18). It is used to print the sum of the output 

information for all WECs in the array to the ‘Results’ spreadsheet (section 6.1). The subroutine is 

sent the reference IDs of the row and column (col) positions to start printing the information, as 

well as the output object for each WEC (stored in a list defined as wec_output_arr_loc). The list 

wec_output_arr_loc is then stored as all_wecs_output. 

Each year of the project lifetime is considered in a for loop with the identifier i_year, as well as the 

zero entry of the output objects (i.e. from 0 to no_run). The header “All wecs” is printed for each of 

the four output aspects (availability, parts costs, other costs and inspection costs). The rows where 

these headers are printed are calculated using the num_wecs and must be modified if the layout of 

the ‘Results’ spreadsheet is changed. The headers are printed if the value of i_year is zero, thereby 

printed them only once.  

The average availability from all WECs for the year under consideration (ave_avail) is initialised to 

zero. The sums of the parts, other and inspection costs of all WECs for the year under consideration 

(sum_parts, sum_other and sum_inspection respectively) are also initialised to zero. A nested for 

loop then considers each WEC in the array (i.e. i_wec from 1 to num_wecs). The average availability 

is updated by adding the value of get_avail obtained from the relevant WEC output object (i.e. all_ 

wecs_output(i_wec).get_wec_output(i_year)) divided by num_wecs. The same object is used for 

the functions get_part_cost, get_other_cost and get_inspection_cost in order to update the sum 

values of sum_parts, sum_other and sum_inspection respectively. Following the nested WECs loop, 

these values are then printed to the correct cell in the ‘Results’ spreadsheet. 

7.17.8 Set total costs 

The total costs incurred by the project (i.e. including array-based aspects as well as all wec-based 

aspects) are set by the subroutines set_total_parts_costs, set_total_other_costs and set_total_ 

inspection_costs. These are called by the draw procedure (section 7.17.4). In each subroutine, the 

list of total costs (i.e. total_parts_costs, total_other_costs or total_inspection_costs) is re-sized 

from zero to the number of years of the project lifetime (no_run). The header “Total” is printed in 

the relevant cell. Each entry in the list of costs is then considered in a for loop where the sum of the 

values from all WECs (defined during draw_all_wecs, section 7.17.7) are added to the array-based 

outputs and printed in the relevant cell. 

The lists of total costs can be accessed using the functions get_total_parts_costs, get_total_other_ 

costs and get_total_inspection_costs, with i being the entry identifier. 

7.17.9 Get functions 

Two other functions in array_output_list can be utilised by procedures in other objects. The 

function get_array_output is sent an identifier i and returns the specified array_output object. The 

function get_no_param obtains the number of parameters printed to the ‘Results’ spreadsheet by 

using the array_output(0) object (section 7.19.4). 



 

Page 127 of 169 

 

7.18 WEC OUTPUT LIST 

The class module wec_output_list is used to update, control and calculate the outputs related to a 

particular WEC in the wave energy array. The following variable names are used throughout the 

object: 

 wec_id   - the ID of the WEC 

 name   - header 

 wec_output_arr() - a list of wec_output objects used to store WEC outputs 

7.18.1 Start 

The subroutine start is called by the procedure of the same name in the wec_object class module 

(section 7.14.1) in order to setup and initialise the WEC-based output objects for each year of the 

project lifetime. It is sent the ID of WEC (id) which is subsequently set to the value of wec_id. The 

variable name defines the header to be printed to the results_sheet and is set to be “WEC “ plus 

the wec_id. 

The list of output objects, wec_output_arr, is then re-sized from zero to the number of years in the 

project lifetime (no_run). The zero entry (i.e. wec_output_arr(0)) is used to store the average 

values across the entire project lifetime. Each entry is then considered in a for loop using the 

identifier i. Each entry (i.e. wec_output_arr(i)) is then set to be a New wec_output object and its 

subroutine start is called (section 7.19.1). 

7.18.2 Add failure and maintenance costs 

The subroutines fail_costs and add_maint_costs are called by the next_interval procedure in the 

wec_object (section 7.14.14) in order to update the outputs costs for repaired failures and 

completed maintenance tasks respectively.  

The fail_costs subroutine is sent the current year of the simulation (irun) and a list of the IDs of 

repaired failures (fail_arr_id). It then sends fail_arr_id to the costs_add subroutine of the correct 

wec_output_arr object for that value of irun in order to update the incurred costs (section 7.19.3). 

The add_maint_costs subroutine is sent the current year of the simulation (irun) and the ID of the 

completed WEC-based maintenance task (maint_cat). It then sends maint_cat to the maint_costs_ 

add subroutine of the correct wec_output_arr object for that value of irun in order to update the 

incurred costs (section 7.19.3). A list of tasks is not required here because a for loop in next_ 

interval calls this subroutine for each completed WEC-based maintenance event, as described in 

section 7.14.14. 

7.18.3 Add availability 

The subroutine avail_add is called by the next_interval procedure in the wec_object (section 

7.14.14) in order to update the output information for WEC availability. It is sent the current year 

of the simulation (irun) and the current power capacity of the WEC (power, between 0 and 1). The 

subroutine updates the average power incurred in that year by using the set_avail subroutine of 

the correct wec_output_arr object for that value of irun (section 7.19.2). The new average 

availability is calculated by obtaining the previous average availability (get_avail) and adding the 

current power capacity divided by the number of intervals in a year (no_intervals). 



 

Page 128 of 169 

 

7.18.4 Draw 

The draw subroutine is called at the end of a simulated array lifetime by the post_process 

procedure in the array_object class module (section 7.13.13) in order to control the printing of 

WEC-based outputs to the ‘Results’ spreadsheet (section 6.1). The subroutine is sent the reference 

IDs of the row and column (col) positions to start printing the information, as well as the value of 

num_wecs (the number of WECs in the array) to assist with printing. The annual average output 

values are calculated by calling the subroutine calc_end (section 7.18.5). The output information 

for each year of the project lifetime is then printed by calling the following procedures in order, 

updating the row to start printing each time (section 7.18.6): 

 post_process_avail 

 post_process_part_cost 

 post_process_other_cost 

 post_process_inspection_cost 

7.18.5 Calculate end 

The subroutine calc_end is called by draw (section 7.18.4) in order to fill the zero entry of the 

wec_output_arr list (i.e. wec_output_arr(0)) with the values of WEC availability, parts costs, other 

costs and inspection costs, averaged across the lifetime of the project. Each year is considered in 

turn using a for loop with the identifier i, from 1 to no_run. For each year, the relevant ‘set’ 

subroutines (e.g. set_avail etc.) in the wec_output_arr(0) object (section 7.19.2) are called. The 

argument sent in each case is the current average value (e.g. get_avail) plus the value for the year 

under consideration (e.g. wec_output_arr(i).get_avail) divided by no_run. 

7.18.6 Post process procedures 

The four ‘post process’ subroutines in wec_output_list print the annual WEC-based output 

information for availability (post_process_avail), parts costs (post_process_part_cost), other costs 

(post_process_other_cost) and inspection costs (post_process_inspection_cost). In each case, the 

subroutine run_title (section 7.18.7) is called if wec_id is 1 (i.e. so the header is only printed once) 

with the required header (e.g. “Availability”). The header name (e.g. “WEC 1”) is also printed in the 

appropriate cell. Each year of the project lifetime is considered in a for loop with the identifier i. 

The output information for that year is then obtained from the relevant wec_output_arr object (i.e. 

wec_output_arr(i), section 7.19.2) and printed to the appropriate cell (i.e. row + wec_id and col + i 

+ 1). In the cost-based subroutines, the output_val_divider is used to convert the information into 

the required format defined by the user (section 7.2.4). Once the information is printed for every 

year, the annual average values calculated in calc_end (section 7.18.5) are also printed to the 

‘Results’ spreadsheet. 

7.18.7 Run title 

The subroutine run_title is called by the ‘post process’ procedures (section 7.18.6) in order to print 

the specified header (this_parameter) to the appropriate cell in the ‘Results’ spreadsheet (section 

6.1). If the parameter is cost-based then the variable output_money_format (section 7.2.4) is 

printed alongside this_parameter. Only this_parameter is printed in the case of “Availability”. The 

subroutine also prints the year headers (i.e. “year “ & i), as well as “per year”, in the appropriate 

cells. 



 

Page 129 of 169 

 

7.18.8 Get functions 

Two other functions in wec_output_list can be utilised by procedures in other objects. The function 

get_wec_output is sent an identifier i and returns the specified wec_output_arr object. The 

function get_no_param obtains the number of parameters printed to the ‘Results’ spreadsheet by 

using the wec_output_arr(0) object (section 7.19.4). 

7.19 WEC OUTPUT 

The wec_output object is used to store output information of the four key parameters (availability, 

parts costs, other costs and inspection costs) for either the array or for each WEC. As described in 

sections 7.17 and 7.18, the relevance of wec_output (i.e. whether it is for the array or for each 

WEC) is determined by the calling procedure (i.e. array_output_list or wec_output_list). The 

parameters are defined using the variables avail, part_cost, other_cost and inspection_cost. The 

number of parameters (no_param) is a constant value (Const) set to 4. 

7.19.1 Start 

The start subroutine is called by the procedures of the same name in the array_output_list (section 

7.17.1) and wec_output_list class modules (section 7.18.1) in order to initialise the outputs. The 

values of avail, part_cost, other_cost and inspection_cost are all set to zero. 

7.19.2 Set and get values 

Each of the parameters has a ‘set’ subroutine and a ‘get’ function (e.g. set_avail and get_avail). The 

‘set’ subroutines are sent a value to set to the relevant parameter (e.g. avail). This value is 

calculated using the ‘get’ functions, as described throughout sections 7.17 and 7.18. 

7.19.3 Add costs 

The subroutine add_costs is called by the fail_costs procedures in the array_output_list and wec_ 

output_list objects (sections 7.17.2 and 7.18.2 respectively) in order to update the costs incurred 

after completing a list of repairs. A list of the IDs of the fault category which have been repaired is 

sent in the variable fail_arr. If there are no failures then the first and only entry of fail_arr will be 

negative. Otherwise, each failure is considered in turn using a for loop with the identifier i. For each 

failure, the functions get_part and get_other in the relevant fail_param_list object (i.e. fail_param_ 

list.get_fail_param(fail_arr(i))) are used to update the values of part_cost and other_cost. 

The subroutine maint_costs_add is called by the add_maint_costs procedures in the array_output_ 

list and wec_output_list objects (sections 7.17.2 and 7.18.2 respectively) in order to update the 

costs incurred after completing a particular maintenance task (maint_cat). The functions get_part, 

get_other and get_inspection in the relevant maint_param_list object (i.e. maint_param_list.get_ 

maint_param(maint_cat)) are used to update the values of part_cost, other_cost and inspection_ 

cost. 

7.19.4 Number of parameters 

The function get_no_param is used by other objects to obtain the value of no_param, in order to 

assist with the format of printing the outputs to the ‘Results’ spreadsheet. 



 

Page 130 of 169 

 

7.20 REVENUE OUTPUT 

The output information related to the revenue is controlled and printed by the revenue_object and 

the revenue_output class module. As described throughout section 7.7, the revenue_object not 

only acts as the control object for revenue-based aspects throughout the simulated project 

lifetime, it also controls the output information. In this regard, it acts as a similar object to array_ 

output_list and wec_output_list described in sections 7.17 and 7.18 respectively. This includes 

creating and initialising a revenue_output object (known as revenue_output_arr) for each year in 

the array lifetime, as well as a zero entry to contain averaged information (section 7.7.1). The 

following procedures in the revenue_ object are used to control the output information and are 

described further in this section: 

 draw 

 run_title 

 calc_end 

 post_process_earned_rev 

 post_process_theory_rev 

 post_process_lost_rev 

When the revenue_output objects are initialised by the start procedure (section 7.7.1), the three 

parameters of the total earned revenue (sum_earned_rev), the total revenue possible (sum_ 

theory_rev) and the total lost revenue (sum_lost_rev) are initialised to zero. 

7.20.1 Draw 

The draw function is called at the end of a simulated array lifetime by the post_process procedure 

in the maint_manager_object class module (section 7.5.9) in order to control the printing of 

revenue-based outputs to the ‘Results’ spreadsheet (section 6.1). The function is sent the reference 

IDs of the row and column (col) positions to start printing the information. The headers for the 

years of the array lifetime are printed by calling the subroutine run_title (section 7.20.2). The 

annual average output values are calculated by calling the subroutine calc_end (section 7.20.3). 

The output information for each year of the project lifetime is then printed by calling the following 

procedures in order, updating the row to start printing each time (section 7.20.4): 

 post_process_earned_rev 

 post_process_theory_rev 

 post_process_lost_rev 

The function returns the ID of the new row to start printing by setting draw to be existing value of 

row plus the number of parameters involved in the revenue output (i.e. revenue_output_ 

arr(0).get_no_param), as well as the required gap for formatting purposes. 

7.20.2 Run title 

The run_title subroutine is called by the draw function (section 7.20.1) in order to print the year 

headers, as well as “per year”, in the appropriate cells in the results_sheet. Each year in the array 

lifetime (no_run) is considered in a for loop with the identifier i. The header is printed as “year “ 

plus the value of i. 



 

Page 131 of 169 

 

7.20.3 Calculate end 

The subroutine calc_end is called by draw (section 7.20.1) in order to fill the zero entry of the 

revenue_output_arr list (i.e. revenue_output_arr(0)) with the values of earned revenue, theoretical 

revenue and lost revenue, averaged across the lifetime of the project. Each year is considered in 

turn using a for loop with the identifier i, from 1 to no_run. For each year, the relevant ‘set’ 

subroutines (e.g. set_sum_earned_rev etc.) in the revenue_output_arr(0) object (section 7.20.5) 

are called. The argument sent in each case is the current average value (e.g. get_sum_earned_rev) 

plus the value for the year under consideration (e.g. revenue_output_arr(i). get_sum_earned_rev) 

divided by no_run. 

7.20.4 Post process procedures 

The three ‘post process’ subroutines in the revenue_object print the annual output information for 

earned revenue (post_process_earned_rev), theoretical revenue if operating at full power (post_ 

process_theory_rev) and lost revenue (post_process_lost_rev). The header name (e.g. “Sum 

earned”) is also printed in the appropriate cell, along with the output_money_format (section 

7.2.4). Each year of the project lifetime is considered in a for loop with the identifier i. The output 

information for that year is then obtained from the relevant revenue_output_arr object (i.e. 

revenue_output_arr(i), section 7.20.5) and printed to the appropriate cell (i.e. col + i). The output_ 

val_divider is used to convert the information into the required format defined by the user (section 

7.2.4). Once the information is printed for every year, the annual average values calculated in 

calc_end (section 7.20.3) are also printed to the ‘Results’ spreadsheet. 

7.20.5 Set and get revenue output 

Each of the three revenue-based output parameters has a ‘set’ subroutine and a ‘get’ function (e.g. 

set_sum_earned_rev and get_sum_earned_rev) in the revenue_output object. The ‘set’ subroutines 

are sent a value to set to the relevant parameter (i.e. revenue_loc). This value is calculated using 

the ‘get’ functions, as described in sections 7.7.4 (revenue.update_rev) and 7.20.3 (revenue.calc_ 

end). 

7.21 TECHNICIANS OUTPUT 

The output information related to the technicians is controlled and printed by the technicians_ 

object and the techs_output class module. As described throughout section 7.15, the technicians_ 

object not only acts as the control object for technician-based aspects throughout the simulated 

project lifetime, it also controls the output information. In this regard, it acts as a similar object to 

array_output_list and wec_output_list described in sections 7.17 and 7.18 respectively. This 

includes creating and initialising a techs_output object (known as techs_output_arr) for each year 

in the array lifetime, as well as a zero entry to contain averaged information (section 7.15.1). The 

following procedures in the technicians_ object are used to control the output information and are 

described further in this section: 

 draw 

 run_title 

 calc_end 

 post_process_contractor_fees 



 

Page 132 of 169 

 

When the techs_output objects are initialised by the start procedure (section 7.15.1), the 

contractor fees parameter (contractor_fees) is initialised to zero. 

7.21.1 Draw 

The draw function is called at the end of a simulated array lifetime by the post_process procedure 

in the maint_manager_object class module (section 7.5.9) in order to control the printing of 

technicians-based outputs to the ‘Results’ spreadsheet (section 6.1). The function is sent the 

reference IDs of the row and column (col) positions to start printing the information. The headers 

for the years of the array lifetime are printed by calling the subroutine run_title (section 7.21.2). 

The annual average output values are calculated by calling the subroutine calc_end (section 

7.21.3). The output information for each year of the project lifetime is printed by calling the post_ 

process_contractor_fees procedure (section 7.21.4). The function then returns the ID of the new 

row to start printing by setting draw to be existing value of row plus the required gap for 

formatting purposes. 

7.21.2 Run title 

The run_title subroutine is called by the draw function (section 7.21.1) in order to print the year 

headers, as well as “per year”, in the appropriate cells in the results_sheet. Each year in the array 

lifetime (no_run) is considered in a for loop with the identifier i. The header is printed as “year “ 

plus the value of i. 

7.21.3 Calculate end 

The subroutine calc_end is called by draw (section 7.21.1) in order to fill the zero entry of the 

techs_output_arr list (i.e. techs_output_arr(0,1)) with the contractor fees averaged across the 

lifetime of the project. Each year is considered in turn using a for loop with the identifier i, from 1 

to no_run. For each year, the set_contractor_fees subroutine in the techs_output_arr(0,1) object 

(section 7.21.6) is called. The argument sent is the current average value (i.e. get_contractor_fees) 

plus the value for the year under consideration (i.e. techs_output_arr(i, 1).get_contractor_fees) 

divided by no_run. 

7.21.4 Post process contractor fees 

The post_process_contractor_fees subroutine in the technicians_object prints the annual output 

information for incurred contractor fees. The header “Contractor fees” is printed in the appropriate 

cell, along with the output_money_format (section 7.2.4). Each year of the project lifetime is 

considered in a for loop with the identifier i. The output information for that year is then obtained 

from the relevant techs_output_arr object (i.e. techs_output_arr(i, 1), section 7.21.6) and printed 

to the appropriate cell (i.e. col + i). The output_val_divider is used to convert the information into 

the required format defined by the user (section 7.2.4). Once the information is printed for every 

year, the annual average values calculated in calc_end (section 7.21.3) are also printed to the 

‘Results’ spreadsheet. 



 

Page 133 of 169 

 

7.21.5 Add contractor fees 

The add_contractor_fees subroutine in the techs_output class module is called by the procedure of 

the same name in the technicians_object (section 7.15.3) in order to add a particular value (val_ 

to_add) to the contractor_fees. 

7.21.6 Set and get technicians output 

The contractor fees output parameter has a ‘set’ subroutine (set_contractor_fees) and a ‘get’ 

function (get_contractor_fees) in the techs_output object. The ‘set’ subroutine is sent a value 

(this_val) to be the contractor_fees. This value is calculated using the ‘get’ function, as described in 

section 7.21.3 (technicians.calc_end). 

7.22 VESSELS OUTPUT 

The output information for the vessels are controlled and printed by the vessel_output_list class 

module, using information stored in the vessel_output. As described in section 7.8, each vessel 

listed in the ‘Vessels’ spreadsheet (section 4.1.3) is assigned its own vessel_object. Subsequently, 

each vessel_object has its own vessel_output_list class module, which is referred to as vessel_ 

output_arr. These output list objects are initialised during the start procedures of each vessel_ 

object (section 7.8.1). The information for each vessel is printed during the post_process 

procedures in the maint_manager_object (section 7.5.9) and vessel_object class modules (section 

7.8.10). The calc_total_vessel_costs subroutine in the maint_manager_object also calculates the 

total output information from all vessels and stores it in the zero entry of the vessel_object (i.e. 

vessel(0)), as described in section 7.5.9. 

7.22.1 Post process 

The post_process subroutine of each vessel_object is called by maint_manager (section 7.5.9) in 

order to print that vessel’s output information to the results_sheet. The header is printed by calling 

the run_title subroutine (see section 7.22.5) from the output object (vessel_output_arr) once using 

the condition if id = 1. The results are then printed by calling the draw subroutine (see section 

7.22.4). 

7.22.2 Output initialisation 

Each vessel_output_list class module is created and initialised during the start procedure of the 

associated vessel_object (section 7.8.1). The start subroutine of vessel_output_list is called with the 

argument name (i.e. the name of the vessel). Here, a vessel_output object (known as vessel_ 

output_arr) is created for each year in the array lifetime, as well as a zero entry to contain 

averaged information. In each case, the start subroutine of the vessel_output object is called. 

The start subroutine of the vessel_output class module initialises the output information for that 

entry by setting the values of hire_fees, fuel_cost and ints_working (the number of intervals the 

vessel is used) to zero. 

7.22.3 Add fees and intervals working 

The vessel output information is updated throughout the simulated lifetime of the wave energy 

array. This involves calling the subroutine add_ints_working in the vessel_output_list whenever a 



 

Page 134 of 169 

 

vessel is mobilised (i.e. vessel.mobilise_boat, section 7.8.4), as well as the subroutines add_hire_ 

fees_for_op and add_fuel_for_op whenever a marine operation has taken place (i.e. vessel. add_ 

op_costs, section 7.8.8). When these procedures are called, they are sent the current year of the 

simulation (irun) as well as the value to add (e.g. hire_fees_for_op). This information is then used to 

identify the correct output object (i.e. vessel_output_arr(irun)) in which to call the relevant ‘set’ 

procedure (e.g. set_hire_fees, section 7.22.8). The argument sent is the current value of that 

parameter in the year irun (e.g. get_hire_fees) plus the value to add (e.g. hire_fees_for_op). 

7.22.4 Draw 

The draw subroutine in the vessel_output_list is called at the end of a simulated array lifetime by 

the post_process procedure in the vessel_object class module (see section 7.22.1) in order to 

control the printing of vessel-based outputs to the ‘Results’ spreadsheet (section 6.1). The 

subroutine is sent the reference IDs of the row and column (col) positions to start printing the 

information. The annual average output values are calculated by calling the subroutine calc_end 

(section 7.22.6). The name of the vessel is then printed to the relevant cell. The output information 

for each year of the project lifetime is printed by calling the following procedures in order, 

updating the row to start printing each time (section 7.22.7): 

 post_process_hire_fees 

 post_process_fuel_cost 

 post_process_ints_working 

7.22.5 Run title 

The run_title subroutine (in vessel_output_list) is called by the post_process procedure in the 

vessel_object class module (see section 7.22.1) in order to print the year headers, as well as “per 

year”, in the appropriate cells in the results_sheet. Each year in the array lifetime (no_run) is 

considered in a for loop with the identifier i. The header is printed as “year “ plus the value of i. The 

section header of “Vessels” is also printed in the appropriate cell. 

7.22.6 Calculate end 

The subroutine calc_end (in vessel_output_list) is called by draw (section 7.22.4) in order to fill the 

zero entry of the vessel_output object (i.e. vessel_output_arr(0)) with the values of hire fees, fuel 

costs and the number of intervals worked, averaged across the lifetime of the project. Each year is 

considered in turn using a for loop with the identifier i, from 1 to no_run. For each year, the 

relevant ‘set’ subroutines (e.g. set_hire_fees etc.) in the vessel_output_arr(0) object (section 

7.22.8) are called. The argument sent in each case is the current average value (e.g. get_hire_fees) 

plus the value for the year under consideration (e.g. vessel_output_arr(i).get_hire_fees) divided by 

no_run. 

7.22.7 Post process procedures 

The three ‘post process’ subroutines in vessel_output_list print the annual output information for 

incurred hire fees (post_process_hire_fees) and fuel costs (post_process_fuel_cost), as well as the 

number of intervals worked (post_process_ints_working). The header name (e.g. “Hire fees”) is 

printed in the appropriate cell, along with the output_money_format (section 7.2.4) in 

parentheses. Each year of the project lifetime is considered in a for loop with the identifier i. The 

output information for that year is then obtained from the relevant vessel_output object (i.e. 



 

Page 135 of 169 

 

vessel_output_arr (i), section 7.22.8) and printed to the appropriate cell (i.e. col + i). The output_ 

val_divider is used to convert the information into the required format defined by the user (section 

7.2.4). Once the information is printed for every year, the annual average values calculated in 

calc_end (section 7.22.6) are also printed to the ‘Results’ spreadsheet. 

7.22.8 Set and get vessel output 

Each of the three vessel-based output parameters has a ‘set’ subroutine and a ‘get’ function (e.g. 

set_hire_fees and get_hire_fees) in the vessel_output object. The ‘set’ subroutines are sent a value 

to set to the relevant parameter (i.e. hire_fees_loc). This value is calculated using the ‘get’ 

functions, as described in sections 7.22.3 (‘add fees and intervals working’) and 7.22.6 (vessel.calc_ 

end). 

7.23 DELAYS OUTPUT 

The output information related to the delays is controlled and printed by the delays_object and the 

delays_output class module. As described in section 7.10, the delays_object not only acts as the 

control object for delays-based aspects throughout the simulated project lifetime, it also controls 

the output information. In this regard, it acts as a similar object to array_output_list and wec_ 

output_list described in sections 7.17 and 7.18 respectively. This includes creating and initialising a 

delays_output object (known as delays_output_arr) for each year in the array lifetime, as well as a 

zero entry to contain averaged information (section 7.10.1). The following procedures in the 

delays_object are used to control the output information and are described further in this section: 

 draw 

 run_title 

 calc_end 

 post_process_work_attempted 

 post_process_space_delay 

 post_process_vessel_delay 

 post_process_parts_delay 

 post_process_weather_delay 

 post_process_techs_delay 

When the delays_output objects are initialised by the start procedure (section 7.10.1), the six 

parameters of the number of intervals where work has been attempted (work_attempted) and 

where work is delayed by a lack of O&M base space (space_delay), vessels (vessel_delay), spare 

parts (parts_delay), suitable weather conditions (weather_delay) or technicians (techs_delay) are 

all initialised to zero. 

7.23.1 Draw 

The draw function is called at the end of a simulated array lifetime by the post_process procedure 

in the maint_manager_object class module (section 7.5.9) in order to control the printing of delays-

based outputs to the ‘Results’ spreadsheet (section 6.1). The function is sent the reference IDs of 

the row and column (col) positions to start printing the information. The headers for the years of 

the array lifetime are printed by calling the subroutine run_title (section 7.23.2). The section 

header of “Delays” is also printed in the appropriate cell. The annual average output values are 

calculated by calling the subroutine calc_end (section 7.23.3). The output information for each year 



 

Page 136 of 169 

 

of the project lifetime is then printed by calling the following procedures in order, updating the row 

to start printing each time (section 7.23.4): 

 post_process_work_attempted 

 post_process_space_delay 

 post_process_vessel_delay 

 post_process_parts_delay 

 post_process_weather_delay 

 post_process_techs_delay 

The printed outputs are formatted into percentage terms by calling the procedure percent_format 

(section 7.23.5). The function returns the ID of the new row to start printing by setting draw to be 

existing value of row plus the number of parameters involved in the delays output (i.e. delays_ 

output_arr(0).get_no_param). 

7.23.2 Run title 

The run_title subroutine is called by the draw function (section 7.23.1) in order to print the year 

headers, as well as “per year”, in the appropriate cells in the results_sheet. Each year in the array 

lifetime (no_run) is considered in a for loop with the identifier i. The header is printed as “year “ 

plus the value of i. 

7.23.3 Calculate end 

The subroutine calc_end is called by draw (section 7.23.1) in order to fill the zero entry of the 

delays_output_arr list (i.e. delays_output_arr(0)) with the number of intervals where work has 

been attempted and where work is delayed by a lack of O&M base space, vessels, spare parts, 

suitable weather conditions or technicians, averaged across the lifetime of the project. Each year is 

considered in turn using a for loop with the identifier i, from 1 to no_run. For each year, the 

relevant ‘set’ subroutines (e.g. set_work_attempted etc.) in the delays_output_arr(0) object 

(section 7.23.6) are called. The argument sent in each case is the current average value (e.g. get_ 

work_attempted) plus the value for the year under consideration (e.g. delays_output_arr(i).get_ 

work_attempted) divided by no_run. 

7.23.4 Post process procedures 

The six ‘post process’ subroutines in the delays_object print the annual output information for the 

number of intervals where work has been attempted (post_process_work_attempted) and where 

work is delayed by a lack of O&M base space (post_process_space_delay), vessels (post_process_ 

vessel_delay), spare parts (post_process_parts_delay), suitable weather conditions (post_process_ 

weather_delay) or technicians (post_process_techs_delay).  

In the subroutine post_process_work_attempted, the header "Instances where work was 

attempted" is printed to the relevant cell. Each year of the project lifetime is considered in a for 

loop with the identifier i. The output information (i.e. get_work_attempted) for that year is then 

obtained from the relevant delays_output_arr object (i.e. delays_output_arr(i), section 7.23.6) and 

printed to the appropriate cell (i.e. col + i). Once the information is printed for every year, the 

annual average value calculated in calc_end (section 7.23.3) is also printed to the results_sheet. 



 

Page 137 of 169 

 

This method is similar in the remaining five ‘post process’ subroutines. However, the number of 

intervals where the work is delayed for a specific reason (e.g. lack of space etc.) is converted into a 

percentage, based on the total number of intervals (work_attempted). The header of the 

subsections therefore say “%” before the cause of the delay (e.g. "% Space delays"). The printed 

values are first initialised to zero. If any work was delayed in that year (i.e. delays_output_ 

arr(i).get_work_attempted is not equal to zero), then the relevant output information (e.g. get_ 

space_delay) is divided by the value of work_attempted. The resulting value is multiplied by 100 in 

order to present it in percentage terms. 

7.23.5 Percent formatting 

The percent_format subroutine in delays_object is called by the draw function (section 7.23.1) in 

order to present the percentages of delay causes in a readable fashion. To achieve this, the 

subroutine is sent the range of the printed information (start_row, end_row, start_col and end_ 

col). It uses this information to set the NumberFormat of the appropriate cells to “0.0” (i.e. 1 d.p). 

7.23.6 Set and get delays output 

Each of the six delays-based output parameters has a ‘set’ subroutine and a ‘get’ function (e.g. 

set_work_attempted and get_work_attempted) in the delays_output object. The ‘set’ subroutines 

are sent a value to set to the relevant parameter (e.g. work_att_loc). This value is calculated using 

the ‘get’ functions, as described in section 7.23.3 (delays.calc_end), for example. 

7.24 MAINTENANCE MANAGER OUTPUT 

Once the control object maint_manager has printed the detailed output information for the array 

to the ‘Results’ spreadsheet, the maint_man_output_list class module is used to control the 

printing of the summary table described in section 6.1. This actual printing of the summary 

information is achieved in the maint_man_output object, referred to as maint_man_output_arr by 

maint_man_output_list. 

7.24.1 Start 

The start subroutine of the maint_man_output_list is not called until the detailed outputs have 

been printed by post_process in the maint_manager_object (section 7.5.9). It is sent the output 

objects array_output_list (identified as array_output_arr, section 7.17), revenue_object (revenue, 

which acts as an output list object, section 7.20), technicians_object (techs_object, acts as an 

output list, section 7.21) and the vessel_output_list corresponding to the total vessel costs 

(vessel(0).get_vessel_output, section 7.22). The purpose of the start subroutine is to obtain the 

annual summary information from the relevant output objects. 

The start subroutine in maint_man_output_list renames the arguments as array_output, revenue, 

techs_object and total_vessel_output. The annual labour cost of the O&M base technicians is then 

calculated by reading base_labour_cost and overheads_multiplier directly from the labour_sheet 

(section 4.3). A new maint_man_output object (known as maint_man_output_arr) is created for 

each year in the array lifetime, as well as a zero entry to contain averaged information. Each output 

object is initialised by calling its start subroutine with the following arguments: 

 i      - entry of the object in the maint_man_output_arr list 

 array_output    - the array_output_list object 



 

Page 138 of 169 

 

 revenue.get_revenue_output(i)  - the revenue_output object for the entry i 

 base_labour_cost   - annual labour cost of O&M base technicians 

(including overheads) 

 techs_object.get_techs_output(i)  - the techs_output object for the entry i 

 total_vessel_output.get_vessel_output(i) - the vessel_output object for all vessels for the 

entry i 

The start subroutine in each maint_man_output then uses these objects to obtain the relevant 

output information for printing to the summary table. The availability of the wave energy array in 

that entry (i_year) is stored in the variable avail after being obtained from the relevant array_ 

output object (array_output_arr.get_array_output(i_year).get_avail, sections 7.17.9 & 7.19.2). This 

method of accessing the relevant output object from the output list class module (i.e. get_array_ 

output) is not required for the other output information, such as revenue_output, due to the 

format of the arguments sent to the start subroutine. In addition to avail, the summary output 

information is stored in the following variables using the relevant objects: 

 sum_rev   - sum of earned revenue (section 7.20) 

 base_labour_cost - set to be the argument base_labour_cost_loc 

 additional_labour_cost - cost of external contractors (section 7.21) 

 part_cost   - total parts costs (section 7.17) 

 other_cost   - total other costs (section 7.17) 

 inspection_cost  - total inspection costs (section 7.17) 

 vessel_hire_fees  - total vessel hire fees (section 7.22) 

 vessel_fuel_cost  - total vessel fuel costs (section 7.22) 

The total operational expenditure incurred in that i_year is then calculated by the function 

calc_cost. All the obtained costs are summed in order to calculate this total_cost. It should be 

noted that the obtained values of part_cost, other_cost and inspection_cost were already 

converted into the user-defined monetary format in the array_output_list object (section 7.17). 

Therefore, these values are multiplied by the output_val_divider in order to ensure the function 

operates in pounds sterling until the information is printed. The profit is then calculated by 

subtracting the total_cost from the sum_rev. 

7.24.2 Draw 

The draw subroutine of the maint_man_output_list is called by the post_process procedure in the 

maint_manager_object (section 7.5.9) in order to control the printing of the summary table in the 

‘Results’ spreadsheet (section 6.1). It first calls the draw_title subroutine (section 7.24.3) to print 

the annual headers before calling the maint_man_output procedure print_title (section 7.24.4) in 

order to print each of the sub-section headers. A for loop then considers each entry in the 

maint_man_ output_arr list and calls print_data (section 7.24.5) with the appropriate row and 

column reference IDs in order to print the summary information in the correct cells. 

7.24.3 Draw title 

The draw_title subroutine (in maint_man_output_list) is called by the draw procedure (see section 

7.24.2) in order to print the year headers, as well as “per year”, in the appropriate cells in the 

results_sheet. Each year in the array lifetime (no_run) is considered in a for loop with the identifier 



 

Page 139 of 169 

 

i. The header is printed as “year “ plus the value of i. The table header of “SUMMARY” is also 

printed in the appropriate cell. 

7.24.4 Print titles 

The subroutine print_title in the maint_man_output object is called by the maint_man_output_list 

procedure draw (section 7.24.2) in order to print the sub-headers for each output parameter. For 

every parameter except “Availability”, the output_money_format is printed in parentheses 

alongside the title for clarity. 

7.24.5 Print data 

The subroutine print_data in the maint_man_output object is called by the maint_man_output_list 

procedure draw (section 7.24.2) in order to print the output data to the summary data. With the 

exception of avail, all the parameters are calculated into pounds sterling format using the output_ 

val_divider value. This does not apply to the values of part_cost, other_cost and inspection_cost as 

they were already converted into the user-defined monetary format in the array_output_list object 

(section 7.17). 

7.25 FAILURES OUTPUT 

The failure_output_list class module is created and initialised by the run_program object during the 

setup_class process (section 7.2.4). It is used to control the printing of the output table of fault 

categories in the ‘Results’ spreadsheet (section 6.1) after the summary table (section 7.24) is 

complete. The failure_output_list is known in run_program as fail_output_list. The actual printing 

of the failures output information is achieved in the failure_output object, referred to as fail_ 

output_arr by failure_output_list. 

7.25.1 Start 

The start subroutine in the failure_output_list class module is called during the setup_class process 

(section 7.2.4) as shown in Figure 7.2 (page 44). A new failure_output object (known as fail_ 

output_arr) is created for each fault category defined in the ‘Inputs’ spreadsheet (section 4.1.2). 

This is achieved by using a for loop from zero to the value of get_no_fail in the fail_param_list class 

module (section 7.3) with the identifier i. The zero entry is included in order to store the total 

output values of all the fault categories. Each output object (i.e. fail_output_arr(i)) is initialised by 

calling its start subroutine with the argument i. 

The start subroutine in each failure_output class module initialises each variable to zero. It also sets 

the fail_ID to the argument sent be the calling function. The variables used to store information in 

the failure_output object are: 

 occurrence   - total number of times this failure has occurred 

 occ_repaired  - total number of times this failure has been repaired 

 part_cost   - total parts costs incurred by this failure per year 

 other_cost   - total other costs incurred by this failure per year 

 total_hire_fees  - total vessel hire fees attributed to this failure per year 

 total_fuel_costs  - total vessel fuels costs attributed to this failure per year 

 total_costs  - total OPEX attributed to this failure per year 



 

Page 140 of 169 

 

 lost_rev_total  - total lost revenue attributed to this failure per year (note; all lost 

revenue parameters are ‘per year’) 

 lost_rev_onsite_repair - total lost revenue attributed to this failure whilst repairs are being 

undertaken on site 

 lost_rev_in_transit - total lost revenue attributed to this failure whilst a vessel is in 

transit 

 lost_rev_offsite  - total lost revenue attributed to this failure whilst the affected 

WEC is offsite 

 lost_rev_onsite  - total lost revenue attributed to this failure whilst the affected 

system is on site 

 lost_rev_wait_space  - total lost revenue attributed to this failure whilst retrieval of the 

affected WEC is delayed due to a lack of space at the O&M base 

 lost_rev_wait_vessel - total lost revenue attributed to this failure whilst retrieval or 

installation of the affected WEC is delayed due to a lack of a suitable vessel 

 lost_rev_wait_parts - total lost revenue attributed to this failure whilst the repair is 

delayed due to a lack of available spare parts 

 lost_rev_wait_weather - total lost revenue attributed to this failure whilst retrieval or 

installation of the affected WEC is delayed due to adverse weather conditions 

 lost_rev_wait_techs - total lost revenue attributed to this failure whilst repair, retrieval 

or installation of the affected WEC is delayed due to a lack of available technicians 

 lost_rev_onsite_none - total lost revenue attributed to this failure whilst the system is on 

site but not set for repair 

 lost_rev_offsite_none - total lost revenue attributed to this failure whilst the WEC is 

undergoing offsite repairs or inspection 

7.25.2 Set occurrence and costs 

The following four subroutines in the failure_output_list object are called throughout the simulated 

project lifetime, as described primarily in sections 7.13 (array_object) and 7.14 (wec_object): 

 set_total_occurrence 

 set_costs_repair 

 set_vessel_hire_fees 

 set_vessel_fuel_cost 

The subroutine set_total_occurrence is sent the argument failure_ID whenever a failure is 

simulated to have occurred in the determine_failure procedures of array_object (section 7.13.2) 

and wec_object (section 7.14.2). It uses failure_ID to identify the correct failure_output object (i.e. 

fail_output_arr(failure_ID)) and calls its procedure set_total_occurrence in order to update the 

value of occurrence by adding 1. 

The subroutine set_costs_repair is called whenever a repair (or series of repairs) has been 

completed in the next_interval procedures of array_object (section 7.13.7) and wec_object (section 

7.14.14). It is sent the list of completed repairs in the variable fail_arr_id. Each failure is considered 

in turn using a for loop with the identifier i. In each case, the set_costs_repair subroutine in the 

relevant failure_output object (i.e. fail_output_arr(fail_arr_id(i))) is called. Here, the value of occ_ 

repaired is updated by adding 1. In addition, the relevant fail_param_list object (i.e. fail_param_ 

list.get_fail_param(fail_ID)) is used to obtain the repair costs for that failure (get_part and get_ 



 

Page 141 of 169 

 

other, section 7.3). These values are divided by the number of years in the array lifetime (no_run) 

before being added to the values of part_cost and other_cost respectively, thereby providing the 

output information in a ‘per year’ format. 

The subroutines set_vessel_hire_fees and set_vessel_fuel_cost are both called by the procedure 

assign_vessel_costs_output in the wec_object (section 7.14.12) in order to assign a particular cost 

(hire_fees_to_add or fuel_cost_to_add) to a certain failure (this_fail). In both cases, the relevant 

failure_output object (i.e. fail_output_arr(this_fail)) is identified and the appropriate procedure 

(set_hire_fees or set_fuel_costs) is called. These subroutines then update the values of total_hire_ 

fees and total_fuel_costs respectively by adding the cost once it has been divided by no_run. 

7.25.3 Next_interval 

At the end of every interval throughout the simulated array lifetime, the procedure assign_lost_ 

revenue_fails_maint in the array_object (section 7.13.8) is used to assign lost revenue to failures 

and maintenance. It achieves this by calling the next_interval subroutine in the failure_output_list 

object with the arguments array_power (between 0 and 1), full_rev (theoretical revenue during 

this interval if array at 100%) and store_array (a 2D array containing information about the failures 

to assign lost revenue). As described in section 7.13.8, each failure contained in store_array has 

three entries: 

1. ID of the failure 

2. Portion of lost revenue to be assigned 

3. Delay state 

The next_interval subroutine utilises this information by first calculating the total lost revenue at 

this interval (i.e. this_lost_rev = full_rev * (1 - array_power)). It then loops through each failure 

listed in store_array (i.e. the second dimension) with the identifier i and identifies the state (i.e. the 

third entry). The relevant failure_output object (i.e. fail_output_arr(store_array(1, i))) is identified 

and its next_interval procedure is called. The arguments sent are this_lost_rev, store_array(2, i) 

(i.e. the portion to be assigned to that failure) and state. 

In the next_interval subroutine of the failure_output object the portion to be assigned to that 

failure is renamed this_share. The ‘per year’ value of lost_rev_total is then updated by adding 

(this_lost_rev * this_share) / no_run. A series of if-else conditions is then used to assign the lost 

revenue to be appropriate breakdown variable based on the String value state. As described in 

section 7.13.8, the state can be given as one of the following entries. The associated variables in 

failure_output are listed alongside the text values. 

 “onsite repair”  - lost_rev_onsite_repair 

 "in transit"   - lost_rev_in_transit 

 "offsite" plus; 

o "none"  - lost_rev_offsite_none 

o "space"  - lost_rev_wait_space 

o "vessel"  - lost_rev_wait_vessel 

o "parts"  - lost_rev_wait_parts 

o "weather" - lost_rev_wait_weather 

o "techs"  - lost_rev_wait_techs 

 "onsite" plus; 

o “none”  - lost_rev_onsite_none 



 

Page 142 of 169 

 

o or one of the delay causes 

In the case of state being either “offsite” or “onsite” followed by a delay cause, the in-built function 

Mid is used to extract the value of delay_cause. If delay_cause is “none” then the appropriate 

variables (i.e. lost_rev_offsite_none or lost_rev_onsite_none) are updated as before. Otherwise, 

the subroutine assign_to_delay is sent the values of delay_cause and this_lost_rev * this_share in 

order to assign the lost revenue to the appropriate delay cause. Error handling is in place if the 

values of state or delay_cause are not recognised. 

7.25.4 Draw 

The draw function in the failure_output_list object is called by the post_process procedure in run_ 

program (section 7.2.5) in order to control the printing of the failure categories output table. It is 

sent the row and column (col) reference IDs to start printing in the ‘Results’ spreadsheet (section 

6.1). It first calls the draw_title subroutine (section 7.25.5) to print the failure name headers (and 

“total”) before calling the failure_output procedure print_title (section 7.25.6) in order to print 

each of the sub-section headers. The subroutine calc_end (section 7.25.7) is called in order to sum 

the values of all failure categories and store them in the zero entry of fail_output_arr. A for loop 

then considers each fault category with the identifier i and calls print_data in the relevant object 

(fail_output_arr(i), section 7.25.8) with the appropriate row and column reference IDs in order to 

print the summary information in the correct cells. This subroutine is also called in the zero entry 

(i.e. fail_output_arr(0)) in order to print the total values. 

The function name (draw) is then updated to be the current value of row plus the number of fault 

categories (i.e. fail_param_list.get_no_fail) and a gap for formatting purposes. This enables the 

post_process procedure in run_ program (section 7.2.5) to determine which row to start printing 

the next section. 

7.25.5 Draw title 

The draw_title subroutine (in failure_output_list) is called by the draw procedure (see section 

7.25.4) in order to print the fault category headers, as well as “total”, in the appropriate cells in the 

results_sheet. Each fault category (i.e. fail_param_list.get_no_fail, section 7.3) is considered in a 

for loop with the identifier i. The header is printed as the name of that category using the function 

get_name in the relevant fail_param_list object (i.e. fail_param_list.get_fail_param(i)). The header 

of “total” is also printed in the appropriate cell. 

7.25.6 Print titles 

The subroutine print_title in the failure_output object is called by the failure_output_list procedure 

draw (section 7.25.4) in order to print the sub-headers of each output parameter. For every 

parameter except "failure id" and the occurrences, the output_money_format is printed in 

parentheses alongside the title and “per year” for clarity. In the cases of "total occurrence in farm” 

and "total occurrences repaired”, the number of years in the project lifetime (no_run) is also 

printed to avoid confusion.  

A variable col_to_sort_by is defined this this subroutine. It is used to determine which column to 

sort the failure tables by, if required. See section 7.25.10 for further information on how the value 

of col_to_sort_by is used. 



 

Page 143 of 169 

 

7.25.7 Calculate end 

The subroutine calc_end (in failure_output_list) is called by the draw procedure (see section 7.25.4) 

in order to sum the values of each parameter for all fault categories. It also calculates the total 

operational expenditure attributed to each fault category. To achieve this, a for loop considers 

each fault category in turn with the identifier i (up to fail_param_list.get_no_fail, section 7.3). In 

each case, the calc_total_cost subroutine in the relevant failure_output object (i.e. fail_output_ 

arr(i)) is called. The calc_end procedure in the zero entry of fail_output_arr (i.e. fail_output_arr(0)) 

is then called and sent the argument of the current output object in the loop (i.e. fail_output_ 

arr(i)). 

The calc_total_cost subroutine in the failure_output object calculates the total operational 

expenditure attributed to that failure (total_costs) by summing the values of part_cost, other_cost, 

total_hire_fees and total_fuel_costs. 

The calc_end subroutine in the failure_output object updates each parameter by adding the value 

of the same parameter obtained from the output object sent as the argument. But doing this for 

each entry in fail_output_arr, the failure_output_list fills the zero entry with the summed values. 

7.25.8 Print data 

The subroutine print_data in the failure_output object is called by the failure_output_list 

procedure draw (section 7.25.4) in order to print the output data to the summary data. With the 

exception of fail_ID, occurrence and occ_repaired, all the parameters are calculated into pounds 

sterling format using the output_val_divider value. 

7.25.9 Set and get procedures 

Each of the output parameters in the failure_output object has a ‘get’ function (e.g. get_ 

occurrence, get_occ_repaired etc.). These functions allow procedures in other objects to access the 

values of the parameters. An example of this is described in section 7.25.7, where calc_end in the 

zero entry of the list (i.e. fail_output_arr(0)) sums the output values of all fault categories. 

7.25.10 Sort failure table 

At the end of a single simulated lifetime, the table of fault categories in the result_sheet is 

rearranged so that high impact fault categories are immediately identifiable, as described in section 

7.2.2. The function sort_fails_table in the failure_output_list object is used to achieve this. The ID 

of the column in the failure tables to sort by (col_to_sort_by) is obtained from the failure_output 

object (i.e. fail_output_arr(1).get_col_to_sort_by). The entire output table of fault categories is 

selected using the Range function with the number of categories identifying the last row (i.e. fail_ 

param_list.get_no_fail, section 7.3) and the number of output parameters identifying the last 

column (i.e. fail_output_arr(1).get_num_param). The in-built VBA function Sort is then used to 

rearrange the table in descending order with the values in col_to_sort_by. 

 

 

 



 

Page 144 of 169 

 

7.26 MAINTENANCE OUTPUT 

The maint_output_list class module is created and initialised by the run_program object during the 

setup_class process (section 7.2.4). It is used to control the printing of the output table of 

scheduled maintenance tasks in the ‘Results’ spreadsheet (section 6.1) after the fault categories 

output table (section 7.25) is complete. The actual printing of the maintenance output information 

is achieved in the maint_output object, referred to as maint_output_arr by maint_output_list. 

7.26.1 Start 

The start subroutine in the maint_output_list class module is called during the setup_class process 

(section 7.2.4) as shown in Figure 7.2 (page 44). A new maint_output object (known as maint_ 

output_arr) is created for each scheduled maintenance task defined in the ‘Inputs’ spreadsheet 

(section 4.1.3). This is achieved by using a for loop from zero to the value of get_no_maint in the 

maint_param_list class module (section 7.4) with the identifier i. The zero entry is included in order 

to store the total output values of all the maintenance tasks. Each output object (i.e. maint_ 

output_arr(i)) is initialised by calling its start subroutine with the argument i. 

The start subroutine in each maint_output class module initialises each variable to zero. It also sets 

the maint_id to the argument sent be the calling function. The variables used to store information 

in the maint_output object are: 

 occurrence   - total number of times this maintenance task has been completed 

 part_cost   - total parts costs incurred by this task per year 

 other_cost   - total other costs incurred by this task per year 

 inspection_cost  - total inspection costs incurred by this task per year 

 total_hire_fees  - total vessel hire fees attributed to this task per year 

 total_fuel_costs  - total vessel fuels costs attributed to this task per year 

 total_costs  - total OPEX attributed to this task per year 

 lost_rev_total  - total lost revenue attributed to this task per year (note; all lost 

revenue parameters are ‘per year’) 

 lost_rev_onsite_repair - total lost revenue attributed to this task whilst work is being 

undertaken on site 

 lost_rev_in_transit - total lost revenue attributed to this task whilst a vessel is in transit 

 lost_rev_offsite  - total lost revenue attributed to this task whilst the affected WEC 

is offsite 

 lost_rev_onsite  - total lost revenue attributed to this task whilst the affected 

system is on site 

 lost_rev_wait_space  - total lost revenue attributed to this task whilst retrieval of the 

affected WEC is delayed due to a lack of space at the O&M base 

 lost_rev_wait_vessel - total lost revenue attributed to this task whilst retrieval or 

installation of the affected WEC is delayed due to a lack of a suitable vessel 

 lost_rev_wait_parts - total lost revenue attributed to this task whilst the event is 

delayed due to a lack of available spare parts 

 lost_rev_wait_weather - total lost revenue attributed to this task whilst retrieval or 

installation of the affected WEC is delayed due to adverse weather conditions 

 lost_rev_wait_techs - total lost revenue attributed to this task whilst the work, retrieval 

or installation of the affected WEC is delayed due to a lack of available technicians 



 

Page 145 of 169 

 

 lost_rev_onsite_none - total lost revenue attributed to this task whilst the system is on 

site but not set to undergo the work 

 lost_rev_offsite_none - total lost revenue attributed to this task whilst the WEC is 

undergoing offsite repairs or inspection 

7.26.2 Set costs 

The following three subroutines in the maint_output_list object are called throughout the 

simulated project lifetime, as described primarily in sections 7.13 (array_object) and 7.14 (wec_ 

object): 

 set_costs_maint 

 set_vessel_hire_fees 

 set_vessel_fuel_cost 

The subroutine set_costs_maint is called whenever one or more scheduled maintenance tasks have 

been completed in the next_interval procedures of array_object (section 7.13.7) and wec_object 

(section 7.14.14). It is sent the ID of each completed task in the variable maint_id. The set_costs_ 

maint subroutine in the relevant maint_output object (i.e. maint_output_arr(maint_id)) is called. 

Here, the value of occurrence is updated by adding 1. In addition, the relevant maint_param_list 

object (i.e. maint_param_list.get_maint_param(maint_id)) is used to obtain the costs incurred for 

that task (get_part, get_other and get_inspection, section 7.4). These values are divided by the 

number of years in the array lifetime (no_run) before being added to the values of part_cost, 

other_cost and inspection_cost respectively, thereby providing the output information in a ‘per 

year’ format. 

The subroutines set_vessel_hire_fees and set_vessel_fuel_cost are both called by the procedure 

assign_vessel_costs_output in the wec_object (section 7.14.12) in order to assign a particular cost 

(hire_fees_to_add or fuel_cost_to_add) to a certain maintenance task (this_maint). In both cases, 

the relevant maint_output object (i.e. maint_output_arr(this_maint)) is identified and the 

appropriate procedure (set_hire_fees or set_fuel_costs) is called. These subroutines then update 

the values of total_hire_fees and total_fuel_costs respectively by adding the cost once it has been 

divided by no_run. 

7.26.3 Next_interval 

At the end of every interval throughout the simulated array lifetime, the procedure assign_lost_ 

revenue_fails_maint in the array_object (section 7.13.8) is used to assign lost revenue to failures 

and maintenance. It achieves this by calling the next_interval subroutine in the maint_output_list 

object with the arguments array_power (between 0 and 1), full_rev (theoretical revenue during 

this interval if array at 100%) and store_array (a 2D array containing information about the 

maintenance tasks to assign lost revenue). As described in section 7.13.8, each maintenance task 

contained in store_array has three entries: 

1. ID of the task 

2. Portion of lost revenue to be assigned 

3. Delay state 

The next_interval subroutine utilises this information by first calculating the total lost revenue at 

this interval (i.e. this_lost_rev = full_rev * (1 - array_power)). It then loops through each 

maintenance task listed in store_array (i.e. the second dimension) with the identifier i and 



 

Page 146 of 169 

 

identifies the state (i.e. the third entry). The relevant maint_output object (i.e. maint_output_ 

arr(store_array(1, i))) is identified and its next_interval procedure is called. The arguments sent are 

this_lost_rev, store_array(2, i) (i.e. the portion to be assigned to that task) and state. 

In the next_interval subroutine of the maint_output object, the portion to be assigned to that 

maintenance task is renamed this_share. The ‘per year’ value of lost_rev_total is then updated by 

adding (this_lost_rev * this_share) / no_run. A series of if-else conditions is then used to assign the 

lost revenue to be appropriate breakdown variable based on the String value state. As described in 

section 7.13.8, the state can be given as one of the following entries. The associated variables in 

maint_output are listed alongside the text values. 

 “onsite repair”  - lost_rev_onsite_repair 

 "in transit"   - lost_rev_in_transit 

 "offsite" plus; 

o "none"  - lost_rev_offsite_none 

o "space"  - lost_rev_wait_space 

o "vessel"  - lost_rev_wait_vessel 

o "parts"  - lost_rev_wait_parts 

o "weather" - lost_rev_wait_weather 

o "techs"  - lost_rev_wait_techs 

 "onsite" plus; 

o “none”  - lost_rev_onsite_none 

o or one of the delay causes 

In the case of state being either “offsite” or “onsite” followed by a delay cause, the in-built function 

Mid is used to extract the value of delay_cause. If delay_cause is “none” then the appropriate 

variables (i.e. lost_rev_offsite_none or lost_rev_onsite_none) are updated as before. Otherwise, 

the subroutine assign_to_delay is sent the values of delay_cause and this_lost_rev * this_share in 

order to assign the lost revenue to the appropriate delay cause. Error handling is in place if the 

values of state or delay_cause are not recognised. 

7.26.4 Draw 

The draw subroutine in the maint_output_list object is called by the post_process procedure in 

run_ program (section 7.2.5) in order to control the printing of the maintenance tasks output table. 

It is sent the row and column (col) reference IDs to start printing in the ‘Results’ spreadsheet 

(section 6.1). It first calls the draw_title subroutine (section 7.26.5) to print the task name headers 

(and “total”) before calling the maint_output procedure print_title (section 7.26.6) in order to print 

each of the sub-section headers. The subroutine calc_end (section 7.26.7) is called in order to sum 

the values of all maintenance tasks and store them in the zero entry of maint_output_arr. A for 

loop then considers each maintenance task with the identifier i and calls print_data in the relevant 

object (maint_output_arr(i), section 7.26.8) with the appropriate row and column reference IDs in 

order to print the summary information in the correct cells. This subroutine is also called in the 

zero entry (i.e. maint_output_arr(0)) in order to print the total values. 

7.26.5 Draw title 

The draw_title subroutine (in maint_output_list) is called by the draw procedure (see section 

7.26.4) in order to print the maintenance task headers, as well as “total”, in the appropriate cells in 



 

Page 147 of 169 

 

the results_sheet. Each maintenance task (i.e. maint_param_list.get_no_maint, section 7.4) is 

considered in a for loop with the identifier i. The header is printed as the name of that category 

using the function get_name in the relevant maint_param_list object (i.e. maint_param_list.get_ 

maint_param(i)). The header of “total” is also printed in the appropriate cell. 

7.26.6 Print titles 

The subroutine print_title in the maint_output object is called by the maint_output_list procedure 

draw (section 7.26.4) in order to print the sub-headers of each output parameter. For every 

parameter except "maint id" and “occurrence”, the output_money_format is printed in 

parentheses alongside the title and “per year” for clarity. In the case of "occurrence”, the number 

of years in the project lifetime (no_run) is also printed to avoid confusion.  

7.26.7 Calculate end 

The subroutine calc_end (in maint_output_list) is called by the draw procedure (see section 7.26.4) 

in order to sum the values of each parameter for all scheduled maintenance tasks. It also calculates 

the total operational expenditure attributed to each task. To achieve this, a for loop considers each 

maintenance task in turn with the identifier i (up to maint_param_list.get_no_maint, section 7.4). 

In each case, the calc_total_cost subroutine in the relevant maint_output object (i.e. maint_ 

output_arr(i)) is called. The calc_end procedure in the zero entry of maint_output_arr (i.e. maint_ 

output_arr(0)) is then called and sent the argument of the current output object in the loop (i.e. 

maint_output_arr(i)). 

The calc_total_cost subroutine in the maint_output object calculates the total operational 

expenditure attributed to that maintenance task (total_costs) by summing the values of part_cost, 

other_cost, inspection_cost, total_hire_fees and total_fuel_costs. 

The calc_end subroutine in the maint_output object updates each parameter by adding the value 

of the same parameter obtained from the output object sent as the argument. But doing this for 

each entry in maint_output_arr, the maint_output_list fills the zero entry with the summed values. 

7.26.8 Print data 

The subroutine print_data in the maint_output object is called by the maint_output_list procedure 

draw (section 7.26.4) in order to print the output data to the summary data. With the exception of 

maint_id and occurrence, all the parameters are calculated into pounds sterling format using the 

output_val_divider value. 

7.26.9 Set and get procedures 

Each of the output parameters in the maint_output object has a ‘get’ function (e.g. get_occurrence, 

get_part_cost etc.). These functions allow procedures in other objects to access the values of the 

parameters. An example of this is described in section 7.26.7, where calc_end in the zero entry of 

the list (i.e. maint_output_arr(0)) sums the output values of all scheduled maintenance tasks. 

 

 



 

Page 148 of 169 

 

7.27 GRAPH CREATOR 

The graph_creator class module is used to control the creation of the output graphs described in 

sections 6.1 and 6.3. It is created by the run_program object (section 7.2.1) and called at the end of 

either a single simulated lifetime (run_multi, section 7.2.2) or a statistical run (stat_run_sub, 

section 7.2.7). A number of variables are defined for use throughout the class module: 

 NewChart  - name of a new chart 

 num_runs  - number of simulations completed in a statistical run 

 MyHeight  - required height of graphs 

 MyWidth  - required width of graphs 

 SecHeight  - required height of smaller graphs 

 SecWidth  - required width of smaller graphs 

 chart_text_font - font of chart text 

 chart_text_size - size of chart text 

The dimensions of the graphs (i.e. MyHeight, MyWidth, SecHeight and SecWidth) are given to VBA 

in ‘point’ format. This can be converted to common units of measurements with the knowledge 

that there are 72 points per inch and 2.54cm in an inch. 

The four key output parameters are defined in a new data type named my_parameter: 

 availability 

 revenue 

 OPEX 

 profit 

7.27.1 Master 

The master subroutine controls the printing of the output graphs and is called at the end of the 

run_program procedures run_multi (section 7.2.2) and stat_run_sub (section 7.2.7). A number of 

variables are defined for use throughout the subroutine: 

 wrksheet  - a variable with the data type Worksheet 

 avg_start_col - identifier of the column containing averaged output information 

 lifetime  - number of years in the wave energy array lifetime 

 i   - identifier 

 this_param - variable with the data type my_parameter 

 left_pos  - position of the graph relevant to the left side of a worksheet 

 top_pos  - position of the graph relevant to the top of a worksheet 

 stat_res_sht - a constant variable identifying the "stat_results" worksheet 

If the statistical run has taken place then the "stat_results" worksheet will exist and the output 

graphs described in section 7.2.7 need to be printed. The smaller dimensions previously defined 

(SecHeight and SecWidth) are used to size these graphs. This scenario is identified by looping 

through each worksheet (wrksheet) in the workbook (i.e. the collection of Worksheets) and 

identifying a sheet with the same name as stat_res_sht. If the sheet is found then it is activated and 

all the existing graphs are deleted by calling the custom function delete_charts (section 7.1.15). The 

format of the "stat_results" worksheet (shown in Figure 6.1, page 33) is used to identify the 

number of years in the simulated lifetime (lifetime). This is achieved by using the custom function 

find_index_ref (section 7.1.16) to find the column containing the header “Average” (avg_start_col). 



 

Page 149 of 169 

 

The number of simulations completed in the statistical run (num_runs) is identified using the in-

built function max on the first column of the worksheet (i.e. where the ID of the simulations is 

stored).  

As described in section 7.2.7, a graph is created for each parameter in the data type my_ 

parameter. This is achieved by calling the create_param_graph subroutine (section 7.27.3) for each 

entry of a for loop covering a certain this_param. A Select Case condition is used to assign each 

parameter (this_param) an Integer value between 1 and 4 (i) in order to calculate the position of 

the graph in the worksheet (top_pos). All four graphs are printed down the left side of the 

worksheet so the value of left_pos does not change. The subroutine create_param_graph is sent 

the arguments this_ param, left_pos, top_pos, and lifetime. 

A graph showing the cumulative profit over the lifetime of the array is then created by calling the 

create_cumul_profit_graph subroutine (section 7.27.4). The value of this_param is set to profit and 

the graph is located at the top of the second column of graphs (i.e. left_pos = 10 + SecWidth and 

top_pos = 10). These variables are sent to the subroutine along with lifetime. 

A histogram showing the monetary values of annual revenue, OPEX and profit is also created by 

calling the subroutine create_monetary_histogram (section 7.27.5). This is to be placed below the 

cumulative profit graph so the values of left_pos and top_pos are set to be 10 + SecWidth and 10 + 

SecHeight respectively. The first cell in the stat_res_sht worksheet is selected for completion. 

Once the graphs in the stat_res_sht worksheet have been created (or were not required at all), the 

subroutine make_summary_graphs (section 7.27.6) is called in order to print the charts containing 

failure and lost revenue information (described in section 6.1).  

7.27.2 Insert chart 

The function insert_chart is used to insert an empty chart of a defined type into the active 

worksheet. The variable ChartShape is defined as the in-built data type shape. This enables it to be 

set to the new chart with the Shapes function AddChart. The variable name NewChart is then set to 

be the newly added chart so it can be referred to by other procedures in the graph_creator object. 

The argument sent to insert_chart (my_type) defines which type of the chart to create. If my_type 

is “scatter” then a scatter chart is created by setting the ChartType of NewChart to be xlXYScatter-

SmoothNoMarkers. Alternatively, if my_type is “histogram” then a histogram is created by setting 

the ChartType of NewChart to be xlColumnClustered. Error handling is in place if neither of these 

options is identified. Finally, each existing series in the graph is deleted by looping through each 

entry in SeriesCollection and using the in-built function Delete. 

7.27.3 Create parameter graphs 

The subroutine create_param_graph is called by the master procedure (section 7.27.1) in order to 

create a graph for one parameter at a time. The graph shows the selected parameter in terms of 

the annual average for each year of the array lifetime. This is shown for every simulation 

undertaken in the statistical run (section 7.2.7) as well as the averaged values. A number of 

variables are used in the subroutine: 

 this_run  - identifier of the current simulation being considered 

 this_year  - identifier of the current year being considered 

 read_row  - identifier of the row ID to read information from 



 

Page 150 of 169 

 

 read_col  - identifier of the column ID to read information from 

 series_ID  - ID of the series being added to the graph 

 average_val - average value obtained from the worksheet 

 x_axis_arr() - list of the x-axis values 

 y_axis_arr() - list of the y-axis values 

The lists to contain the axis information (x_axis_arr  and y_axis_arr) are both re-sized from 1 to the 

number of years in the array lifetime. The insert_chart subroutine (section 7.27.2) is then called 

with the argument “scatter” so that an empty scatter chart is inserted into the active worksheet. A 

for loop considers each year in the project lifetime using the identifier this_year. This enables the 

list of x-axis values to be filled with the year ID (i.e. x_axis_arr(this_year) = this_year).  

Each simulation undertaken by the statistical run is then considered in a for loop with the identifier 

this_run (from 1 to num_runs). An extra value is considered (i.e. num_rows + 1) in order to include 

the average values. The row in which the information is stored for that simulation (read_row) is 

identified by taking the format of the worksheet into account (i.e. this_run + 2). The y_axis_arr list 

is then filled with the values of the defined parameter (this_param) for the simulation under 

consideration (this_run). If the annual values for that run are being considered (i.e. if this_run <> 

num_runs + 1) then the information is read directly from the worksheet. This is achieved by looping 

through each year (this_year from 1 to lifetime) and identifying the column containing the 

information (read_col). The format of the worksheet is considered in calculating read_col, as well 

as the numerical value assigned to this_param (due to the fact that my_ parameter is a custom 

data type defined using Enum). The entry in the list of y-axis values (i.e. y_axis_arr(this_year)) is set 

to be the value of the relevant cell (i.e. Cells(read_row, read_ col).value). The exception is for profit, 

where the entry is filled with the revenue value (i.e. in read_col - 2) minus the OPEX (i.e. in read_col 

- 1). However, if the value of this_run is equal to num_runs plus 1, then the average results from all 

simulations need to be calculated for each year in the lifetime. Again, each this_year is considered 

in a for loop and the value of read_col is identified. If my_param is profit then the variable 

average_val is first set to be the average revenue (using the in-built function Average on the 

correct Range). The average OPEX is then subtracted to store the average profit in average_val. If 

my_param is not profit then the value of average_val is set to be the Average of the relevant 

Range. The appropriate entry in the y_axis_arr list (i.e. y_axis_arr(this_year)) is then set to be 

average_val. 

Once the correct values have been calculated, a new series is added to the graph by calling the 

subroutine add_this_series (section 7.27.7) with the relevant arguments (x_axis_arr  and y_axis_ 

arr). The series_ID is identified by counting the number of series’ which exist in the graph (i.e. 

NewChart.SeriesCollection.count). The name of this series can then be set as “Run “ plus the value 

of this_run. The series then undergoes some formatting. Firstly, the colour of the line is selected 

using the in-built ObjectThemeColor function, distinguishing between profit and the other 

parameters. The lines defining individual simulations (i.e. if this_run is not equal to num_runs + 1) 

are then made to be faint and thin. This allows the averaged values (i.e. if this_run is equal to 

num_runs + 1) to be the dominant aspect of each graph. In this case, the line is made bolder and 

thicker. The format of the line is modified to be dashed for revenue (i.e. DashStyle = msoLineSys-

Dash) and dotted for OPEX (i.e. DashStyle = msoLineSysDot) so that they can be distinguished from 

the availability chart. 



 

Page 151 of 169 

 

After each series has been added, the format_scatter_chart subroutine (section 7.27.8) is called in 

order to position the chart correctly and add the appropriate text information. The final argument 

is sent as False, indicating to the procedure that this is not the cumulative profit chart. 

7.27.4 Create cumulative profit graph 

The subroutine create_cumul_profit_graph is called by the master procedure (section 7.27.1) in 

order to create a graph showing cumulative profit of the wave energy array throughout its lifetime. 

Each line on the graph represents a single simulation undertaken in the statistical run (section 

7.2.7), as well as the averaged values shown more prominently. The subroutine uses the same 

variable names as also defined in the create_param_graph procedure and it follows a very similar 

structure (see section 7.27.3). Error handling is in place to ensure that this subroutine is only called 

when the value of this_param is profit. The key difference of create_cumul_profit_graph compared 

to create_param_graph is that the list of y-axis values (y_axis_arr) is filled with the cumulative 

profit (cumulative_val) calculated for each year (this_year). The format_scatter_chart subroutine 

(section 7.27.8) is again used in order to position the chart correctly and add the appropriate text 

information. 

7.27.5 Create monetary histogram 

The function create_monetary_histogram is called by the master procedure (section 7.27.1) in 

order to create a histogram showing the availability, revenue and OPEX averaged over the lifetime 

of the year and averaged across all simulations undertaken in the statistical run (section 7.2.7). A 

number of variables are used in the function: 

 i    - identifier 

 average_avail_col - ID of the column containing the average availability 

 mean_row   - ID of the row containing the mean values from all simulations 

 conf_int_row  - ID of the row containing the 95% confidence intervals 

 x_axis_arr()  - list of the x-axis values 

 y_axis_arr()  - list of the y-axis values 

 x_axis_title  - title of the x-axis 

 y_axis_title  - title of the y-axis 

 theme_colour  - theme colour of the histogram 

 error_rng   - range of 95% confidence intervals 

 series_ID   - ID of the series being added to the histogram 

Firstly, the positions of average_avail_col, mean_row and conf_int_row are identified by calling the 

custom function find_index_ref (section 7.1.16) with the appropriate arguments. The list of values 

(x_axis_arr  and y_axis_arr) are then re-sized to contain three values (i.e. one for each parameter). 

A for loop is then used for each list in order to store the parameter name (in x_axis_arr) and the 

mean values (in y_axis_arr). The subroutines insert_chart (section 7.27.2) and add_this_series 

(section 7.27.7) are called in order to create a new histogram with the required values (i.e. only one 

series, series_ID). The axis titles (x_axis_title, y_axis_title) and theme_colour are defined and sent 

to the format_histogram (section 7.27.9) procedure in order to format and position the histogram, 

as well as adding the appropriate text. One of the arguments sent to the procedure is “smaller”, 

indicating that the histogram will be the smaller of the pre-defined sizes, therefore matching the 

scatter diagrams. The 95% confidence intervals are then stored in the variable error_rng after being 

read from the correct row (conf_int_row) in the worksheet. The in-built VBA functions 



 

Page 152 of 169 

 

HasErrorBars and ErrorBars are used to place the confidence intervals on the histogram and format 

them. Finally, a small note is added to the histogram (as a ChartTitle) to explain that 95% 

confidence intervals have been applied. 

7.27.6 Create summary graphs 

The function make_summary_graphs is called by the master procedure (section 7.27.1) in order to 

create graphs providing a visual representation of the fault category outputs and causes of lost 

revenue. If the graph_creator class module has been set up at the end of a single simulation then 

these graphs are printed to the “Results” spreadsheet (section 6.1). If a statistical run process has 

taken place then the graphs are printed to the “stat_mean” sheet instead (section 6.3). A number 

of variables are used in the function: 

 wrksheet  - a variable with the data type Worksheet 

 sht_name  - name of the worksheet to print the graphs on 

 i   - identifier 

 fail_head_row - ID of the row containing the headers of the fault categories 

 opex_col  - identifier of the column containing OPEX 

 lost_rev_col - identifier of the column containing total lost revenue 

 this_col  - identifier 

 x_axis_arr() - list of the x-axis values 

 y_axis_arr() - list of the y-axis values 

 left_pos  - position of the graph relevant to the left side of a worksheet 

 top_pos  - position of the graph relevant to the top of a worksheet 

 x_axis_title - title of the x-axis 

 y_axis_title - title of the y-axis 

 theme_colour - theme colour of the histogram 

 this_cause  - identifier 

 count  - counter 

 stat_sht  - a constant variable identifying the "stat_mean" worksheet 

Firstly, the appropriate worksheet (sht_name) is initialised to be “Results”. It stays as this unless 

the stat_sht exists, in which case it becomes “stat_mean”.  The worksheet is then activated and all 

existing charts are deleted using the custom function delete_charts (section 7.1.15). The positions 

of fail_head_row, opex_col and lost_rev_col are identified by calling the custom function find_ 

index_ref (section 7.1.16) with the appropriate arguments.  

The two graphs showing the OPEX and lost revenue attributed to each fault category are then 

created by setting this_col to be opex_col first and then lost_rev_col. In each case, the lists of the 

axis values (x_axis_arr and y_axis_arr) are re-sized to contain information for each of the fault 

categories (i.e. 1 to fail_param_list.get_no_fail, section 7.3). This x-axis values are set to be the 

fault category ID (in column B) and the y-axis values are read from the relevant row (i.e. 

fail_head_row + i) in this_col. The subroutines insert_chart (section 7.27.2) and add_this_series 

(section 7.27.7) are called in order to create a new histogram with the required values. The graphs 

are placed in a column on the left of the worksheet, so left_pos is set to be 10 and top_pos is 

calculated based on the value of this_col relative to opex_col, taking the height of the graph 

(MyHeight) into account. The x_axis_title is set to be “Failure ID” for both graphs, whilst the values 

of y_axis_title and theme_colour depend on the graph being created. The two fault category charts 



 

Page 153 of 169 

 

are then completed by calling the format_histogram procedure (section 7.27.9) in order to format 

and position the histogram, as well as adding the appropriate text. One of the arguments sent to 

the procedure is “normal”, indicating that the histogram will be sized according to the MyHeight 

and MyWidth dimensions previously defined. 

The graph to show the different causes of lost revenue is then created. This is achieved by first 

defining the causes of lost revenue explicitly in the x_axis_arr list. The y_axis_arr list is then re-

sized to match and the counter (count) is initialised to -1 (because the subsequently loop starts at 

zero). A For Each loop then considers each entry (this_cause) in x_axis_arr in turn and adds 1 to 

count so that the entry is allocated a numerical value. The custom function get_cause_col (section 

7.27.10) is used to obtain the ID of the appropriate column for that cause (this_col). This enables 

the matching entry of y_axis_arr to be filled with the total lost revenue (per year) incurred due to 

that cause of delay. The subroutines insert_chart (section 7.27.2) and add_this_series (section 

7.27.7) are called in order to create a new histogram with the required values. The position-based 

variables (left_pos and top_pos) are defined accordingly, as well as the axis titles and theme_ 

colour, before being sent to format_histogram (section 7.27.9) to complete the chart. The first cell 

in the worksheet is selected for completion. 

7.27.7 Add this series 

The function add_this_series is called whenever a new series is to be added to the chart being 

created (NewChart). The arguments sent to the function are the lists of x-axis values (x_axis_arr) 

and y-axis values (y_axis_arr) used to define the series. The ID of the series (series_ID) is identified 

by counting the number of existing series’ once the NewSeries is added (i.e. NewChart.Series-

Collection.count). The XValues and Values aspects of the series_ID are set to be x_axis_arr and 

y_axis_arr respectively. 

7.27.8 Format scatter diagram 

The function format_scatter_chart is called in order to format the current scatter diagram being 

created (NewChart). It is sent the arguments left_pos (position from the left edge of the 

worksheet), top_pos (position from the top edge of the worksheet), lifetime (number of years in 

the assessed wave energy array), this_param (the output parameter being represented by the 

graph) and a Boolean variable cumulative (used to determine when the graph showing cumulative 

profit is being created). The size of the scatter graph is set to be SecHeight and SecWidth using the 

Parent functions Height and Width respectively. The functions Left and Top are then used in 

conjunction with left_pos and top_pos respectively in order to position the chart as specified in the 

calling procedure. The legend usually accompanying Excel graphs is removed by setting HasLegend 

to False in an effort to make the charts more readable. The x-axis title is then set to be “Year” with 

the MajorUnit of 1. The y-axis title is specified using the String variable str, which is initially set to 

the text value of this_param (using the function str_param, section 7.27.11). The value of str is 

then modified according to the Boolean variable cumulative. In addition, if this_param is not 

availability then the title also reads the output_money_format in parentheses. The y-axis title 

becomes str using the in-built Axes and AxisTitle functions. The font and size of the text in the chart 

are set to the pre-defined chart_text_font and chart_text_size respectively. The limits of the x-axis 

are set to be 1 and the number of years in the project lifetime. It is unnecessary to specify limits for 

the y-axis due to the large variations expected between assessed WECs and strategies. However, 

the y-axis upper limit in the case of this_param being availability is set as 1. The border of the chart 



 

Page 154 of 169 

 

is then removed (i.e. Border.LineStyle = xlNone) for presentation purposes. Finally, a ChartTitle is 

added as a replacement for a legend, explaining that the faint lines are the results of individual 

simulations, whilst the bold line is the average. 

7.27.9 Format histogram 

The function format_histogram is called in order to format the current histogram being created 

(NewChart). It is sent the arguments left_pos (position from the left edge of the worksheet), 

top_pos (position from the top edge of the worksheet), x_axis_title, y_axis_title, theme_colour and 

the size_type (“normal” or “smaller”). Firstly, the number of series’ contained in the histogram is 

stored in the variable series_ID. The Parent functions Height and Width are then set according to 

the size_type (i.e. MyHeight and MyWidth if “normal”, or SecHeight and SecWidth if “smaller”). The 

functions Left and Top are then used in conjunction with left_pos and top_pos respectively in order 

to position the chart as specified in the calling procedure. The legend usually accompanying Excel 

graphs is removed by setting HasLegend to False in an effort to make the histogram more readable. 

Each axis title is added and set to be either x_axis_title or y_axis_title accordingly. The font and size 

of the text in the histogram are set to the pre-defined chart_text_font and chart_text_size 

respectively. The border of the chart is then removed (i.e. Border.LineStyle = xlNone) for 

presentation purposes. Finally, the ObjectThemeColor of the series_ID in the histogram is set to be 

the relevant msoThemeColorAccent depending on the value of theme_colour. 

7.27.10 Get cause column 

The function get_cause_col is used by the procedure make_summary_graphs (section 7.27.6) to 

identify the ID of the column in a given worksheet (sht_name) where the header in the fault 

categories output table matches a given delay cause (this_cause). The ID of the row containing the 

headers is sent to the function as fail_head_row. A Select Case condition is used to assess the 

specified text defined by this_cause where a meaningful and concise explanation of the delay cause 

is stated. The value of this_cause is used to identify what the corresponding header for that 

parameter says in the worksheet exactly. The text of the identified header is stored in the variable 

search_text. The custom function find_index_ref (section 7.1.16) is then sent this value, along with 

the other relevant arguments such as fail_head_row, in order to identify the correct column (get_ 

cause_col). 

7.27.11 String parameter 

The function str_param is used by the format_scatter_chart procedure (section 7.27.8) to identify 

the String value of the this_param argument. The argument will have the custom data type 

my_parameter but has a numerical value in VBA. If VBA sets an axis title to my_param directly then 

it will simply read the numerical value. Therefore, str_param uses a Select Case condition to 

convert my_param into a return value (temp_str) with the String data type. The function name 

(str_param) is then set to be temp_str so it can be used by the calling procedure.  



 

Page 155 of 169 

 

8 DOCUMENT INDEX 

This section aims to provide the user with a point of reference when viewing the model VBA code. 

There are a lot of modules, class modules and procedures involved in the code which all serve a 

particular purpose. Some procedures may only be used once whilst others are utilised time and 

time again. This section provides a list of the VBA objects (modules and class modules) in 

alphabetical order. Within each subsection, a list of the procedures (subroutines and functions) is 

given, also in alphabetical order. Alongside each entry there is the number of the most relevant 

section and the page number it starts at. Please note that the entry may be discussed in other 

sections of the document and cross referencing has been applied throughout the report where 

relevant. This index does not highlight where variables are discussed, even those which are used 

multiple times, as the user can refer to the relevant section where the variables appear. 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

array_fail - 7.16.2 122 

array_fail get_fail_id 7.16.2 122 

array_fail start 7.16.2 122 

array_fail_list - 7.16.1 121 

array_fail_list add_fail 7.16.1 121 

array_fail_list get_fail_arr_id 7.16.1 121 

array_fail_list get_fail_number 7.16.1 121 

array_fail_list get_total_fails 7.16.1 121 

array_fail_list start 7.16.1 121 

array_fail_list string_fail 7.16.1 121 

array_object - 7.13 76 

array_object add_array_fail 7.13.2 77 

array_object assign_lost_revenue_fails_maint 7.13.8 84 

array_object attempt_fix 7.13.4 79 

array_object calc_fail_share 7.13.11 88 

array_object count_wecs_offsite 7.13.3 78 

array_object determine_failure 7.13.2 77 

array_object determine_fix 7.13.3 78 

array_object fails_power_loss 7.13.9 87 

array_object fails_power_loss_retrieve 7.13.10 87 

array_object get_num_wecs 7.13.14 89 

array_object get_offshore_hours_subsea 7.13.6 82 

array_object get_technicians_object 7.13.14 89 

array_object get_wec 7.13.14 89 

array_object next_interval 7.13.7 83 

array_object post_process 7.13.13 89 

array_object print_interval 7.13.12 88 

array_object start 7.13.1 77 

array_object sum_wecs_power 7.13.5 82 

array_object update_array_power 7.13.5 82 

array_output_list - 7.17 124 

array_output_list add_maint_costs 7.17.2 124 

array_output_list avail_add 7.17.3 124 



 

Page 156 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

array_output_list calc_end 7.17.5 125 

array_output_list draw 7.17.4 125 

array_output_list draw_all_wecs 7.17.7 126 

array_output_list fail_costs 7.17.2 124 

array_output_list get_array_output 7.17.9 126 

array_output_list get_no_param 7.17.9 126 

array_output_list get_total_inspection_costs 7.17.8 126 

array_output_list get_total_other_costs 7.17.8 126 

array_output_list get_total_parts_costs 7.17.8 126 

array_output_list post_process_avail 7.17.6 125 

array_output_list post_process_inspection_cost 7.17.6 125 

array_output_list post_process_other_cost 7.17.6 125 

array_output_list post_process_part_cost 7.17.6 125 

array_output_list set_total_inspection_costs 7.17.8 126 

array_output_list set_total_other_costs 7.17.8 126 

array_output_list set_total_parts_costs 7.17.8 126 

array_output_list start 7.17.1 124 

cost_benefit_analysis - 7.12 71 

cost_benefit_analysis create_full_list 7.12.2 72 

cost_benefit_analysis order_this_list 7.12.5 75 

cost_benefit_analysis start 7.12.1 72 

cost_benefit_analysis worth_repairing_WEC 7.12.4 75 

cost_benefit_analysis worth_retrieving_WEC 7.12.3 73 

delays_object - 7.10 66 

delays_object add_this_delay 7.10.2 66 

delays_object calc_end 7.23.3 136 

delays_object draw 7.23.1 135 

delays_object percent_format 7.23.5 137 

delays_object post_process_parts_delay 7.23.4 136 

delays_object post_process_space_delay 7.23.4 136 

delays_object post_process_techs_delay 7.23.4 136 

delays_object post_process_vessel_delay 7.23.4 136 

delays_object post_process_weather_delay 7.23.4 136 

delays_object post_process_work_attempted 7.23.4 136 

delays_object run_title 7.23.2 136 

delays_object start 7.10.1 66 

delays_output - 7.23 135 

delays_output get_no_param 7.23.6 137 

delays_output get_parts_delay 7.23.6 137 

delays_output get_space_delay 7.23.6 137 

delays_output get_techs_delay 7.23.6 137 

delays_output get_vessel_delay 7.23.6 137 

delays_output get_weather_delay 7.23.6 137 

delays_output get_work_attempted 7.23.6 137 

delays_output set_parts_delay 7.23.6 137 

delays_output set_space_delay 7.23.6 137 

delays_output set_techs_delay 7.23.6 137 



 

Page 157 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

delays_output set_vessel_delay 7.23.6 137 

delays_output set_weather_delay 7.23.6 137 

delays_output set_work_attempted 7.23.6 137 

delays_output start 7.23 135 

failure_no_object - 7.16.5 123 

failure_no_object count 7.16.5 123 

failure_no_object ret_intermediate_count 7.16.5 123 

failure_no_object ret_major_count 7.16.5 123 

failure_no_object ret_minor_count 7.16.5 123 

failure_no_object start 7.16.5 123 

failure_output - 7.25 139 

failure_output assign_to_delay 7.25.3 141 

failure_output calc_end 7.25.7 143 

failure_output calc_total_cost 7.25.7 143 

failure_output get_col_to_sort_by 7.25.10 143 

failure_output get_lost_rev_in_transit 7.25.9 143 

failure_output get_lost_rev_offsite 7.25.9 143 

failure_output get_lost_rev_offsite_none 7.25.9 143 

failure_output get_lost_rev_onsite 7.25.9 143 

failure_output get_lost_rev_onsite_none 7.25.9 143 

failure_output get_lost_rev_onsite_repair 7.25.9 143 

failure_output get_lost_rev_total 7.25.9 143 

failure_output get_lost_rev_wait_parts 7.25.9 143 

failure_output get_lost_rev_wait_space 7.25.9 143 

failure_output get_lost_rev_wait_techs 7.25.9 143 

failure_output get_lost_rev_wait_vessel 7.25.9 143 

failure_output get_lost_rev_wait_weather 7.25.9 143 

failure_output get_num_param 7.25.9 143 

failure_output get_occ_repaired 7.25.9 143 

failure_output get_occurrence 7.25.9 143 

failure_output get_other_cost 7.25.9 143 

failure_output get_part_cost 7.25.9 143 

failure_output get_total_costs 7.25.9 143 

failure_output get_total_fuel_costs 7.25.9 143 

failure_output get_total_hire_fees 7.25.9 143 

failure_output next_interval 7.25.3 141 

failure_output print_data 7.25.8 143 

failure_output print_title 7.25.6 142 

failure_output set_costs_repair 7.25.2 140 

failure_output set_fuel_costs 7.25.2 140 

failure_output set_hire_fees 7.25.2 140 

failure_output set_total_occurrence 7.25.2 140 

failure_output start 7.25.1 139 

failure_output_list - 7.25 139 

failure_output_list calc_end 7.25.7 143 

failure_output_list draw 7.25.4 142 

failure_output_list draw_title 7.25.5 142 



 

Page 158 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

failure_output_list next_interval 7.25.3 141 

failure_output_list set_costs_repair 7.25.2 140 

failure_output_list set_total_occurrence 7.25.2 140 

failure_output_list set_vessel_fuel_cost 7.25.2 140 

failure_output_list set_vessel_hire_fees 7.25.2 140 

failure_output_list sort_fails_table 7.25.10 143 

failure_output_list start 7.25.1 139 

failure_param - 7.3 48 

failure_param error_finder 7.3.2 49 

failure_param get_action_reqd 7.3.1 48 

failure_param get_days_onshore 7.3.1 48 

failure_param get_hours_offshore 7.3.1 48 

failure_param get_name 7.3.1 48 

failure_param get_ops_limits_type 7.3.1 48 

failure_param get_other 7.3.1 48 

failure_param get_part 7.3.1 48 

failure_param get_percent 7.3.1 48 

failure_param get_power 7.3.1 48 

failure_param get_relevance 7.3.1 48 

failure_param get_severity 7.3.1 48 

failure_param get_techs_reqd 7.3.1 48 

failure_param get_vessel_reqd 7.3.1 48 

failure_param start 7.3.1 48 

failure_param_list - 7.3 48 

failure_param_list get_fail_param 7.3.1 48 

failure_param_list get_no_fail 7.3.1 48 

failure_param_list start 7.3.1 48 

functions - 7.1 36 

functions Col_Letter 7.1.14 39 

functions delete_charts 7.1.15 40 

functions delete_run_sh 7.1.4 37 

functions delete_stat_shts 7.1.5 37 

functions delete_this_sht 7.1.6 37 

functions find_index_ref 7.1.16 40 

functions get_ordered_array_2d 7.1.12 38 

functions insert_sheet 7.1.2 36 

functions is_in_array 7.1.9 38 

functions num_rows 7.1.11 38 

functions max 7.1.7 37 

functions min 7.1.7 37 

functions round_all_decimals 7.1.17 40 

functions str_2d_array 7.1.10 38 

functions str_array 7.1.10 38 

functions terminate_program 7.1.8 38 

functions timer 7.1.3 36 

functions WorkbookOpen 7.1.13 39 

graph_creator - 7.27 148 



 

Page 159 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

graph_creator add_this_series 7.27.7 153 

graph_creator create_cumul_profit_graph 7.27.4 151 

graph_creator create_monetary_histogram 7.27.5 151 

graph_creator create_param_graph 7.27.3 149 

graph_creator format_histogram 7.27.9 154 

graph_creator format_scatter_chart 7.27.8 153 

graph_creator get_cause_col 7.27.10 154 

graph_creator insert_chart 7.27.2 149 

graph_creator make_summary_graphs 7.27.6 152 

graph_creator master 7.27.1 148 

graph_creator str_param 7.27.11 154 

hindcast_object - 7.11 67 

hindcast_object get_estimated_monthly_rev 7.11.5 71 

hindcast_object get_estimated_months_install_wait 7.11.5 71 

hindcast_object int_wndo_open 7.11.3 70 

hindcast_object is_daylight 7.11.4 70 

hindcast_object rounded_val 7.11.2 69 

hindcast_object start 7.11.1 67 

hindcast_object this_daylight_wndo_open 7.11.4 70 

hindcast_object this_wndo_open 7.11.3 70 

maint_man_output - 7.24 137 

maint_man_output calc_cost 7.24.1 137 

maint_man_output get_no_param 7.24 137 

maint_man_output print_data 7.24.5 139 

maint_man_output print_title 7.24.4 139 

maint_man_output start 7.24.1 137 

maint_man_output_list - 7.24 137 

maint_man_output_list draw 7.24.2 138 

maint_man_output_list draw_title 7.24.3 138 

maint_man_output_list get_no_param 7.24 137 

maint_man_output_list start 7.24.1 137 

maint_manager_object - 7.5 50 

maint_manager_object calc_total_vessel_costs 7.5.9 53 

maint_manager_object determine_actual_fix 7.5.6 51 

maint_manager_object determine_failure 7.5.4 51 

maint_manager_object determine_fix 7.5.5 51 

maint_manager_object insert_sheet_maint_man 7.5.3 51 

maint_manager_object next_interval 7.5.8 52 

maint_manager_object post_process 7.5.9 53 

maint_manager_object print_interval 7.5.7 52 

maint_manager_object start 7.5.2 50 

maint_output - 7.26 144 

maint_output assign_to_delay 7.26.3 145 

maint_output calc_end 7.26.7 147 

maint_output calc_total_cost 7.26.7 147 

maint_output get_inspection_cost 7.26.9 147 

maint_output get_lost_rev_in_transit 7.26.9 147 



 

Page 160 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

maint_output get_lost_rev_offsite 7.26.9 147 

maint_output get_lost_rev_offsite_none 7.26.9 147 

maint_output get_lost_rev_onsite 7.26.9 147 

maint_output get_lost_rev_onsite_none 7.26.9 147 

maint_output get_lost_rev_onsite_repair 7.26.9 147 

maint_output get_lost_rev_total 7.26.9 147 

maint_output get_lost_rev_wait_parts 7.26.9 147 

maint_output get_lost_rev_wait_space 7.26.9 147 

maint_output get_lost_rev_wait_techs 7.26.9 147 

maint_output get_lost_rev_wait_vessel 7.26.9 147 

maint_output get_lost_rev_wait_weather 7.26.9 147 

maint_output get_num_param 7.26.9 147 

maint_output get_occurrence 7.26.9 147 

maint_output get_other_cost 7.26.9 147 

maint_output get_part_cost 7.26.9 147 

maint_output get_total_cost 7.26.9 147 

maint_output get_total_fuel_costs 7.26.9 147 

maint_output get_total_hire_fees 7.26.9 147 

maint_output next_interval 7.26.3 145 

maint_output print_data 7.26.8 147 

maint_output print_title 7.26.6 147 

maint_output set_costs_maint 7.26.2 145 

maint_output set_fuel_costs 7.26.2 145 

maint_output set_hire_fees 7.26.2 145 

maint_output start 7.26.1 144 

maint_output_list - 7.26 144 

maint_output_list calc_end 7.26.7 147 

maint_output_list draw 7.26.4 146 

maint_output_list draw_title 7.26.5 146 

maint_output_list next_interval 7.26.3 145 

maint_output_list set_costs_maint 7.26.2 145 

maint_output_list set_vessel_fuel_cost 7.26.2 145 

maint_output_list set_vessel_hire_fees 7.26.2 145 

maint_output_list start 7.26.1 144 

maintenance_param - 7.4 49 

maintenance_param get_action_reqd 7.4.1 49 

maintenance_param get_days_onshore 7.4.1 49 

maintenance_param get_hours_offshore 7.4.1 49 

maintenance_param get_inspection 7.4.1 49 

maintenance_param get_interval_yrs 7.4.1 49 

maintenance_param get_name 7.4.1 49 

maintenance_param get_ops_limits_type 7.4.1 49 

maintenance_param get_other 7.4.1 49 

maintenance_param get_part 7.4.1 49 

maintenance_param get_relevance 7.4.1 49 

maintenance_param get_staggered_maint 7.4.1 49 

maintenance_param get_techs_reqd 7.4.1 49 



 

Page 161 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

maintenance_param get_time_of_year 7.4.1 49 

maintenance_param get_vessel_reqd 7.4.1 49 

maintenance_param start 7.4.1 49 

maintenance_param_list - 7.4 49 

maintenance_param_list get_maint_param 7.4.1 49 

maintenance_param_list get_no_maint 7.4.1 49 

maintenance_param_list start 7.4.1 49 

parts_object - 7.9 63 

parts_object all_parts_available 7.9.2 64 

parts_object correct_type_name 7.9.5 65 

parts_object get_num_parts_types 7.9.1 63 

parts_object multi_parts_types_available 7.9.4 65 

parts_object multi_replacement_types_arr 7.9.3 65 

parts_object next_interval 7.9.7 65 

parts_object order_new_parts 7.9.2 64 

parts_object print_interval 7.9.8 66 

parts_object start 7.9.1 63 

parts_object this_type_id 7.9.6 65 

revenue_object - 7.7 57 

revenue_object draw 7.20.1 130 

revenue_object calc_end 7.20.3 131 

revenue_object get_month 7.7.6 59 

revenue_object get_num_entries 7.7.1 57 

revenue_object get_power 7.7.2 58 

revenue_object get_revenue 7.7.3 58 

revenue_object get_revenue_output 7.7.3 58 

revenue_object get_tariff 7.7.3 58 

revenue_object post_process_earned_rev 7.20.4 131 

revenue_object post_process_lost_rev 7.20.4 131 

revenue_object post_process_theory_rev 7.20.4 131 

revenue_object start 7.7.1 57 

revenue_object revenue_estimate 7.7.6 59 

revenue_object run_title 7.20.2 130 

revenue_object update_rev 7.7.4 58 

revenue_output - 7.20 130 

revenue_output get_no_param 7.20 130 

revenue_output get_sum_earned_rev 7.20.5 131 

revenue_output get_sum_lost_rev 7.20.5 131 

revenue_output get_sum_theory_rev 7.20.5 131 

revenue_output set_sum_earned_rev 7.20.5 131 

revenue_output set_sum_lost_rev 7.20.5 131 

revenue_output set_sum_theory_rev 7.20.5 131 

revenue_output start 7.20 130 

run_program - 7.2 41 

run_program copy_weather_data 7.2.6 45 

run_program fast_run_sub 7.2.2 42 

run_program full_run_sub 7.2.2 42 



 

Page 162 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

run_program post_process 7.2.5 45 

run_program setup_class 7.2.4 43 

run_program stat_run_sub 7.2.7 46 

run_program run_multi 7.2.2 42 

run_program run_om 7.2.3 42 

technicians_object - 7.15 118 

technicians_object add_contractor_fees 7.15.3 119 

technicians_object add_tech_working 7.15.2 119 

technicians_object calc_end 7.21.3 132 

technicians_object draw 7.21.1 132 

technicians_object get_annual_labour_cost 7.15.6 120 

technicians_object get_num_techs_avail 7.15.6 120 

technicians_object get_tech_availability 7.15.6 120 

technicians_object get_techs_output 7.15.6 120 

technicians_object next_interval 7.15.4 120 

technicians_object post_process_contractor_fees 7.21.4 132 

technicians_object print_interval 7.15.5 120 

technicians_object run_title 7.21.2 132 

technicians_object start 7.15.1 118 

technicians_object update_contractors_on_hire 7.15.3 119 

techs_output - 7.21 131 

techs_output add_contractor_fees 7.21.5 133 

techs_output get_contractor_fees 7.21.6 133 

techs_output set_contractor_fees 7.21.6 133 

techs_output start 7.21 131 

vessel_object - 7.8 60 

vessel_object add_op_costs 7.8.8 62 

vessel_object calc_fuel_for_op 7.8.7 62 

vessel_object calc_hire_fees_for_op 7.8.6 61 

vessel_object check_availability 7.8.3 61 

vessel_object demobilise_boat 7.8.5 61 

vessel_object get_day_hire_fee 7.8.2 61 

vessel_object get_free_travel_time 7.8.2 61 

vessel_object get_fuel_cost_hr 7.8.2 61 

vessel_object get_id 7.8.2 61 

vessel_object get_name 7.8.2 61 

vessel_object get_num_ints_left_in_use 7.8.2 61 

vessel_object get_num_print_cols 7.8.2 61 

vessel_object get_personnel_capacity 7.8.2 61 

vessel_object get_state 7.8.2 61 

vessel_object get_tow_time 7.8.2 61 

vessel_object get_vessel_output 7.8.2 61 

vessel_object mobilise_boat 7.8.4 61 

vessel_object next_interval 7.8.4 61 

vessel_object num_new_days 7.8.6 61 

vessel_object post_process 7.8.10 62 

vessel_object print_interval 7.8.9 62 



 

Page 163 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

vessel_object start 7.8.1 60 

vessel_output - 7.22 133 

vessel_output get_fuel_cost 7.22.8 135 

vessel_output get_hire_fees 7.22.8 135 

vessel_output get_ints_working 7.22.8 135 

vessel_output get_no_param 7.22.8 135 

vessel_output set_fuel_cost 7.22.8 135 

vessel_output set_hire_fees 7.22.8 135 

vessel_output set_ints_working 7.22.8 135 

vessel_output start 7.22.2 133 

vessel_output_list - 7.22 133 

vessel_output_list add_fuel_for_op 7.22.3 133 

vessel_output_list add_hire_fees_for_op 7.22.3 133 

vessel_output_list add_ints_working 7.22.3 133 

vessel_output_list calc_end 7.22.6 134 

vessel_output_list draw 7.22.4 134 

vessel_output_list get_no_param 7.22 133 

vessel_output_list get_vessel_output 7.22 133 

vessel_output_list post_process_fuel_cost 7.22.7 134 

vessel_output_list post_process_hire_fees 7.22.7 134 

vessel_output_list post_process_ints_working 7.22.7 134 

vessel_output_list run_title 7.22.5 134 

vessel_output_list start 7.22.2 133 

weather_object - 7.6 54 

weather_object get_num_ops_lims_types 7.6.1 54 

weather_object get_this_wndo 7.6.2 55 

weather_object is_daylight 7.6.3 56 

weather_object longest_daylight_wndo 7.6.5 56 

weather_object print_interval 7.6.4 56 

weather_object start 7.6.1 54 

wec_fail - 7.16.4 123 

wec_fail get_fail_id 7.16.4 123 

wec_fail start 7.16.4 123 

wec_fail_list - 7.16.3 122 

wec_fail_list add_fail 7.16.3 122 

wec_fail_list get_fail_arr_id 7.16.3 122 

wec_fail_list get_fail_number 7.16.3 122 

wec_fail_list get_total_fails 7.16.3 122 

wec_fail_list start 7.16.3 122 

wec_fail_list string_fail 7.16.3 122 

wec_fail_list update_fail_arr 7.16.3 122 

wec_object - 7.14 89 

wec_object add_wec_fail 7.14.2 92 

wec_object any_fails_need_retrieval 7.14.6 97 

wec_object any_maint_delay 7.14.35 117 

wec_object any_maint_due 7.14.34 116 

wec_object any_maint_ready 7.14.34 116 



 

Page 164 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

wec_object assign_offsite_fail_techs 7.14.18 107 

wec_object assign_offsite_maint_techs 7.14.18 107 

wec_object assign_vessel_costs_output 7.14.12 100 

wec_object attempt_fix 7.14.4 93 

wec_object calc_intervals_offsite 7.14.9 98 

wec_object calmest_lims_for_op 7.14.8 98 

wec_object define_set_for_maint 7.14.3 92 

wec_object determine_failure 7.14.2 92 

wec_object fail_currently_under_repair 7.14.19 108 

wec_object fails_time_share_arr 7.14.13 101 

wec_object find_fails_array_position 7.14.19 108 

wec_object find_install_vessel_id 7.14.31 114 

wec_object find_maint_array_position 7.14.19 108 

wec_object full_wndo_open 7.14.11 99 

wec_object get_arr_maint_ready 7.14.17 107 

wec_object get_arr_retrieval_fails 7.14.16 107 

wec_object get_delay_status 7.14.36 117 

wec_object get_fail_list 7.14.36 117 

wec_object get_install_time 7.14.30 114 

wec_object get_maint_interval_in_year 7.14.32 115 

wec_object get_maint_due 7.14.36 117 

wec_object get_max_severity 7.14.27 112 

wec_object get_num_wec_maint_cats 7.14.36 117 

wec_object get_num_wec_maints_due 7.14.34 116 

wec_object get_num_wec_maints_ready 7.14.34 116 

wec_object get_state 7.14.36 117 

wec_object get_time_until_repaired 7.14.29 113 

wec_object get_total_other_costs 7.14.26 112 

wec_object get_total_parts_costs 7.14.26 112 

wec_object get_wec_maint_cat 7.14.36 117 

wec_object get_wec_output_list 7.14.36 117 

wec_object get_wec_power 7.14.36 117 

wec_object intermediate_failures 7.14.28 113 

wec_object ints_to_next_maint 7.14.32 115 

wec_object longest_time_offshore 7.14.7 97 

wec_object maint_currently_being_done 7.14.19 108 

wec_object major_failures 7.14.28 113 

wec_object next_interval 7.14.14 102 

wec_object num_onsite_techs_reqd 7.14.5 96 

wec_object num_retrieval_fails 7.14.33 116 

wec_object print_interval 7.14.20 109 

wec_object ret_action_fails 7.14.25 112 

wec_object ret_action_onsite_priority 7.14.22 111 

wec_object ret_actions_reqd 7.14.21 110 

wec_object ret_part_to_replace 7.14.10 99 

wec_object ret_vessel_id_to_use 7.14.24 112 

wec_object set_maint_due 7.14.3 92 



 

Page 165 of 169 

 

OBJECT NAME PROCEDURE NAME MOST 
RELEVANT 
SECTION 

STARTING 
PAGE NUMBER 
OF SECTION 

wec_object start 7.14.1 91 

wec_object this_maint_ready 7.14.34 116 

wec_object try_assign_replacement_parts 7.14.15 106 

wec_object vessel_for_action 7.14.23 111 

wec_output - 7.19 129 

wec_output costs_add 7.19.3 129 

wec_output get_avail 7.19.2 129 

wec_output get_inspection_cost 7.19.2 129 

wec_output get_no_param 7.19.4 129 

wec_output get_other_cost 7.19.2 129 

wec_output get_part_cost 7.19.2 129 

wec_output maint_costs_add 7.19.3 129 

wec_output set_avail 7.19.2 129 

wec_output set_inspection_cost 7.19.2 129 

wec_output set_other_cost 7.19.2 129 

wec_output set_part_cost 7.19.2 129 

wec_output start 7.19.1 129 

wec_output_list - 7.18 127 

wec_output_list add_maint_costs 7.18.2 127 

wec_output_list avail_add 7.18.3 127 

wec_output_list calc_end 7.18.5 128 

wec_output_list draw 7.18.4 128 

wec_output_list fail_costs 7.18.2 127 

wec_output_list get_no_param 7.18.8 129 

wec_output_list get_wec_output 7.18.8 129 

wec_output_list post_process_avail 7.18.6 128 

wec_output_list post_process_inspection_cost 7.18.6 128 

wec_output_list post_process_other_cost 7.18.6 128 

wec_output_list post_process_part_cost 7.18.6 128 

wec_output_list run_title 7.18.7 128 

wec_output_list start 7.18.1 127 

 

 

 



 

Page 166 of 169 

 

9 REFERENCES 

DET NORSKE VERITAS (DNV). (2012) Failure Mode and Effect Analysis (FMEA) of Redundant 

Systems. Recommended Practice. Report ID: DNV-RP-D102. 

GRAY, A. M. (2017) Modelling Operations and Maintenance Strategies for Wave Energy Arrays. 

Thesis (EngD). College of Engineering, Mathematics and Physical Sciences, University of Exeter. 

WAVE ENERGY SCOTLAND (WES). (2017a) Operations and Maintenance Simulation Tool - Weather 

Simulation Report. 

WAVE ENERGY SCOTLAND (WES). (2017b) Operations and Maintenance Simulation Tool - User 

Guide. 

WAVE ENERGY SCOTLAND (WES). (2017c) Operations and Maintenance Simulation Tool - Future 

Upgrades. 



 

Page 167 of 169 

 

10 APPENDICES 

10.1 LIST OF FIGURES 

Figure 3.1. O&M model structure (high-level) ................................................................................... 14 

Figure 4.1. Example of an operational limits graph in the 'Ops Limit' spreadsheet .......................... 24 

Figure 5.1. Initial message box for the 'stat run' process, requesting the number of iterations 

required .............................................................................................................................................. 28 

Figure 5.2. Secondary message box for the 'stat run' process, asking if new statistical sheets are 

required .............................................................................................................................................. 28 

Figure 6.1. Layout of 'stat_results' output spreadsheet, where n = array lifetime ........................... 33 

Figure 7.1. Object Oriented Programming structure of the VBA-based O&M model, showing key 

modules and class modules ............................................................................................................... 35 

Figure 7.2. Flowchart of the setup_class procedure .......................................................................... 44 

Figure 7.3. Structure of maint_manager.print_interval .................................................................... 52 

Figure 7.4. Structure of the cost-benefit analysis object ................................................................... 71 

Figure 7.5. Structure of the worth_retrieving_WEC function ............................................................ 73 

Figure 7.6. Structure of the attempt_fix subroutine in array_object ................................................ 80 

Figure 7.7. Structure of assign_lost_revenue_fails_maint ................................................................ 85 

Figure 7.8. Structure of attempt_fix in wec_object ........................................................................... 94 

Figure 7.9. Structure of next_interval in the wec_object class module ........................................... 103 

 

10.2 LIST OF TABLES 

Table 4.1. Headers for each parameter considered in the 'Ops Limits' input spreadsheet ............... 24 

Table 4.2. Layout of the 'Weather' spreadsheet ................................................................................ 26 

Table 7.1. Variables used throughout the wec_object class module ................................................. 89 

 

 

 

 



 

Page 168 of 169 

 

10.3 APPENDIX A 

Using an FMEA to obtain O&M tool inputs 

A Failure Modes and Effect Analysis (FMEA) of a wave energy converter (WEC) will provide a 

complete list of the components within each subsystem of the device. Every possible failure mode 

of each component is assessed in terms of its likelihood and consequence. The FMEA process is 

used substantially in industrial to identify areas of the design requiring further mitigation in order 

to reduce risk. The likelihood values are usually chosen from probability bands, due to the fact that 

exact failure rate information is difficult to obtain (although it is preferred). The O&M model 

utilises failure rate data in the form of probability of failure per year. If the data is obtained in a 

different format during the FMEA then appropriate conversions need to be undertaken. Useful 

equations for this process are: 

  
  

 
   (A.1) 

     
 

 
  (A.2) 

         (A.3) 

       (A.4) 

Where: 

 λ = annual failure rate 

 Tf = total number of expected failures in design lifetime 

 t = design lifetime 

 F = annual probability of failure 

 R = annual reliability (i.e. probability of not failing) 

The defined likelihood of each failure mode leads onto calculating the probability of failure, whilst 

the consequence indicates the severity of the fault. A wave energy converter may consist of many 

hundreds of different components. It is unfeasible to apply the Monte Carlo analysis of the O&M 

model  to each component due to the unacceptable computational time required. Instead, the 

WEC components are grouped into fault categories representing the main engineering aspects of a 

wave energy machine; hydraulics, moorings, structural and electrical. The fault categories also 

represent the severity of component failure, in terms of cost and time to repair, and are therefore 

classed as major, intermediate or minor. Expert judgement must be used throughout this process 

to ensure that each component is represented by the appropriate fault category. When calculating 

the probability of failure of a fault category, the following equation must be used: 

    ∏      
    (A.5) 

Where: 

 F = annual probability of failure of fault category 

 i = single component i in fault category 

 n = number of components in fault category 

 Ri = annual probability of no failure (i.e. reliability) of single component i 

 Ni = total number of component i in WEC 

The O&M model inputs can include array-based components as well as the components contained 

within an individual WEC. Where these aspects are included in the analysis, it is possible that the 

failure rates of related fault categories will change according to size of the overall array. For 



 

Page 169 of 169 

 

example, the failure rate of the overalls moorings system might increase if more WECs are added 

to the array. Therefore, the probability of failure for array-based fault categories may differ from 

that calculated by equation A.5, for example: 

     (∏      
   )    (A.6) 

Where: 
 FA = annual probability of failure of array-based fault category 
 i = single component i in fault category 
 n = number of components in fault category 
 Ri = annual probability of no failure (i.e. reliability) of single component i 
 Ni = total number of component i in single mooring system 
 Nm = total number of mooring systems in array (i.e. a function of the number of WECs) 

The parameters associated with the repair (e.g. parts costs) of a fault category must be based on all 

of the components which are represented within that category. A bill of materials is a useful 

document to identify such parameters. As a consequence of this method, the parameters shown in 

the O&M model are averages of all the relevant components. If there is a large variation in any 

aspect then further breakdown of that fault category should be considered.  


