1st Annual WES Conference

3 minute elevator pitches

Power Take-Off call participants (PTO)

Running Order

- 1. Trident Energy
- 2. Scuola Superiore Sant'Anna
- 3. Romax Technology
- 4. Oscilla Power
- 5. University of Edinburgh
- 6. Ecosse Subsea
- 7. BluePower Energy
- 8. Artemis Intelligent Power
- 9. CorPower Ocean
- 10.Umbra Cuscinetti
- 11.Exceedence

WaveDrive

Steve Packard

WES Annual Conference

WaveDrive

 Project summary Optimisation of Linear Generator (LG) PTO: Improve performance Design for manufacture Ease of maintenance Generic and Modular Marinisation 	 Challenges Multiple WEC types and designs Sea trials to test PTO and validate control system innovation
 Technical product or integration offering 100% electro-magnetic Direct Drive PTO Scalable: PowerPod range: 30kW ~ 350kW 4-Quadrant generator control Dynamic force control Impedance matching MPC ->100% power conversion API to access control system "smarts" 	 Skills, expertise and technology required WEC device developers Offshore energy systems integrators Manufacturing partners/suppliers Technology licensees

Dielectric Elastomer Generator PTO

Giacomo Moretti

WES Annual Conference

Dielectric Elastomer Generator PTO

<u>Objective</u>: developing a fully-functional prototype of electrostatic deformable PTO based on Dielectric Elastomers

Challenges

٠

Work Packages

- WP1: Project management
- WP2: Concept and Control
- WP3: Implementation and Hardware-in-Loop testing
- WP4: Reliability testing
- WP5: Techno-economic assessing and road-mapping

Start: 2 Oct. 2016

Progress

Milestones

- M1: Architecture, models and experimental setups (month 3)
- M2: Setups and evaluation strategy (month 6)
- M3: Testing results and preliminary evaluation (month 9)
- M4: Final results and evaluation (month 12)

Piston

Procurement completed Setups in construction!

Rotary motor

Wave Energy Transmission Module

Romax Technology Ltd

WES Annual Conference

Wave Energy Transmission Module

Project summary

A WEC PTO module comprising a speed-increasing gearbox and rotary generator, which is efficient, robust, works across multiple WEC types and scales, and uses mature technology from other industries.

Technical product or integration offering

- Any WEC where rotation (through any angle) around an axis may be produced.
- Self-contained, sealed and protected gearbox and generator unit.
- Feasible across all likely device sizes, including sub-scale prototypes.

Challenges

- We can: capture and convert a lot of energy, keep a large WEC producing power through extreme conditions.
- We want to: see if we can capture even more energy, improve output quality/smoothing, enhance controllability.

Skills, expertise and technology required

- Opportunity to demonstrate cross-platform applicability.
- Collaboration on what 'enhanced controllability' might mean.
- Practicality/economics of in-PTO power smoothing vs alternatives.

Development of a Variable Damping Linear Power Take-Off

Oscilla Power

WES Annual Conference

Development of a Variable Damping Linear Power Take-Off

Project summary

- Hydraulic/direct drive hybrid drivetrain
- Hydrostatic hydraulic gearbox provides velocity increase and allows mech. power management
- Double-sided Vernier PM generator provides high efficiency and elec. frequency at low velocity

- Controllability of direct-drive systems with power management of conventional hydraulics
- Highly efficient drivetrain with controllable damping for maximum WEC control/efficiency
- Hydraulic power dissipation increases survivability and average to peak power ratio

Challenges

- In double-sided generator topology, matching small air gaps on both sides is challenging
 - Single sided topology an option
- PTO performance/reliability highly dependent on bearing and hydraulic seal solutions.
 - Working with Trelleborg and Schaeffler

Skills, expertise and technology required

• Other WEC developers interested in collaboration

C-GEN Direct Drive

University of Edinburgh

WES Annual Conference

2nd December 2016

THE UNIVERSITY of EDINBURGH School of Engineering

Institute for Energy Systems

C-GEN Direct Drive

Project summary

- Fully flooded generator design
- CFD modelling of thermal
- Wet coil operation to improve cooling.
- High performance reliable bearings
- Experimental validation

Challenges

- Integration of power conversion into generator modules.
- Offshore structural design for survivability.
- Commercialisation of a disruptive technology.

Technical product or integration offering

- Modular design increases availability and reduces OPEX.
- Manufacture using standard components, reduces CAPEX.
- Integrate as linear or rotary machine.
- Applicable to a wide range of wave devices, and other offshore renewables.

Skills, expertise and technology required

- Power electronic conversion for control and grid interface.
- Condition monitoring and predictive maintenance strategies.
- Manufacture and production engineering

Power Electronic Controlled Magnet Gear PECMAG

Ecosse Subsea systems Supply Design Bathwick Electrical Design Pure Marine Gen

WES Annual Conference

Power Electronic Controlled Magnet Gear PECMAG

Project summary

- Non-contact magnetic gear
- Enables all-electric / high conversion efficiency

Challenges

- Clear & Standardised benchmarking
- Integration with scaled WEC prototype

Technical product or integration offering

 Design, supply, install & maintain a linear or Rotary PTO for WEC developers Skills, expertise and technology required

- WEC developers to provide specifications
- Manufacturing partner for Gear system ??

Direct drive ball screw PTO

Blue Power Energy

WES Annual Conference

Direct drive ball screw PTO

Project summary:

Design, built and tested 5 kW PTO with control system and kinematics model

Technical product or integration offering:

Wave energy convertors compatible with:

- Attenuator.
- Point absorber.
- Oscillating wave surge convertors.
- Wave star like devices.

Challenges:

Future development:

Have teamed up with a WEC developer to apply for stage 3 WES project and deploy 1/10th scale model at EMEC.

Technical Challenges:

- To marinize PTO.
- Fit torque limiter/damper.
- Deploy at sea to prove survivability.

Skills, expertise and technology required:

We would be delighted to speak with any WEC developers who would like to trial our PTO.

Hybrid Digital Displacement[®] hydraulic PTO for wave energy

Jamie Taylor

WES Annual Conference

2nd December 2016

Quoceant

Specialists in Marine Energy & Technology

Hybrid Digital Displacement® hydraulic PTO for wave energy

Project summary

- Marriage of quantised and Digital Displacement[®] hydraulic technologies.
- Linear and rotary versions are possible.

- The key requirements of pressure-control & transforming have been lab verified in this Stage 2 project.
- LCoE reductions of up to 15% (compared with quantised-only PTO) have been modelled.

Technical product or integration offering

- Advanced PTO system.
- Multiple configurations possible.
- WEC and non-WEC applications.

Challenges

- Build lab test system with representative inertia.
- Test and demonstrate 100kW scale PTO.
- Develop core component technology for '100kw' & '1MW '.
- Form partnership(s) for future sea-going trials.
- Create WEC-Sim module for third party use.

Skills, expertise and technology required

• Seeking end-users.

HiDrive

Nicolas Meyer

WES Annual Conference

HiDrive

Project summary

- Development of a ½ scale WEC
 Phase control (Energy density > 8MWh/ton)
 - Leightweight units
 - Effective install and O&M scheme
- Dry testing with HIL-rig
- Ocean testing at EMEC

Technical product or integration offering

- WaveSpring
- Pneu-mechanical PTO

Challenges

- Upcoming development 1:1 scale WEC
- Management of design evolution
- Developing supply chain

Skills, expertise and technology required

- Offshore operation
- Mooring and anchoring
- Electrical systems

ReBaS [Reciprocating Ball Screw] Generator

Umbra Cuscinetti SpA

WES Annual Conference 2nd December 2016

ReBaS Generator

Wave energy conversion concepts that could directly integrate the RLA

GRAZIE PER L'ATTENZIONE THANK YOU FOR YOUR ATTENTION

Gator – a compliant seal free hydraulic PTO

Annicka Wänn

WES Annual Conference

2nd December 2016

Pelagic Innovation

University of Strathclyde Glasgow

Gator – a compliant seal free hydraulic PTO

 Project summary Stage 2 WES PTO project Polymer spring pump to drive pressurised water at around 10 bar Eliminates major failure mechanism in similar systems 	 Challenges Control algorithms for non-linear responses System integration of the pump/valve/turbine Polymer valve solutions Hydro turbine selection
 Stage 1 identified significant LCOE gains Stage 2 will optimise concept and validate LCOE assumptions Validate concept at small scale of interest to potential non-WEC customers (1kW scale) and design large scale system prototyping for Stage 3 	
 Technical product or integration offering 1kW size product at the end of Stage 2 Polymer pump with polymer valves driving hydro turbine Large scale system suitable for up to 80% of WEC Suitable for integration into non-WEC applications (mooring lines) 	 Skills, expertise and technology required System engineering partners Control system engineering Control strategy experience Mechanical engineer Hydro electric Turbine Accumulation systems

1st Annual WES Conference

3 minute elevator pitches

Novel Wave Energy Converter call participants (NWEC)

Running Order

- 1. Zyba
- 2. Joules E. E. S.
- 3. Mocean Energy
- 4. AWS
- 5. 4c Engineering
- 6. Anaconda (Checkmate)
- 7. Quoceant

CCell – Curved WEC Optimisation

Zyba Ltd

WES Annual Conference

CCell – Curved WEC Optimisation

Project summary

•Optimise:

- Power to weight
- Manufacturing
- Operations
- Implicit extreme protection
 Validate performance in lab
 Validate numerical tools
 LCOE modelling

Challenges

- Operational unknowns
 Long term performance of composites
 Design of joints between materials
 Flexible couplings / hoses
 Efficient power conversion to electricity
- •Shore connections

Technical product or integration offering
1:3 scale system (4m height; RMS: 2 to 6 kW)
High energy capture (up to 80%)
Lightweight (paddle < 350 Kg at 1:3 scale)
Rapid deployment (target 90 minutes at site)

Skills, expertise and technology required
Marine operators
Fabricators (Composites and Steel)
Coatings / Galvanising

Joules E. E. S. Ltd. - WaveTrain

Project Summary

- Attenuator array
- Three linked buoys in a row
- Integral inclined water columns
- Efficient hydrodynamic capture
- Air turbine & generator PTO
- Modular System
- Simple catenary mooring

Opportunities for Collaboration

- Inflatable membrane tuning/detuning though change of the water plane area
- Alternative PTO systems to air turbine/generator

- Reinforced lightweight concrete construction expertise
- Control strategies for ultimate performance

Mocean Wave Energy Converter

Cameron McNatt

WES Annual Conference

Mocean Wave Energy Converter

Advanced Archimedes Waveswing

AWS Ocean Energy

WES Annual Conference

Advanced Archimedes Waveswing

Project summary	Challenges
 Hydrodynamic study Numerical modelling Tank testing & model validation FEED study Parametric cost optimisation 	 PTO integration / optimisation Excess power dissipation Rolling seal Electrical system Deployment & maintenance
 Technical product or integration offering High-efficiency, lower cost subsea point absorber Advanced control techniques to maximise energy conversion 	 Skills, expertise and technology required PTO with high force-density Rolling seal with long fatigue life End-stops capable of significant power dissipation Low cost anchoring and deployment

ACER Attenuator Cost of Energy Reduction

4c Engineering

WES Annual Conference

ACER (Attenuator Cost of Energy Reduction)

Project summary

- Verified tank testing campaign
- Validated numerical model (DNV GL)

- Concept engineering of full scale device
- Enhanced understanding of Sea Power Platform

Technical product or integration offering

- Stable platform for further development of:
 - PTO and control systems
 - Structural materials

Challenges

- Future development needs:
 - Length scaling/site matching
 - Control strategy

• Technical challenges to overcome:

- Pontoon costs
- Hinge bearings

Skills, expertise and technology required

- Hydrodynamics expertise slam loads
- Floating concrete hulls optimisation
- Electrical concept engineering WEC array

Anaconda Novel Wave Energy Converter

John Fitzgerald

WES Annual Conference

Anaconda Novel Wave Energy Converter

Challenges

- Complex Physics / Numerical Modelling
- Full Lifecycle Rubber Engineering
- PTO coupling and Optimisation

Technical product or integration offering

• Utility scale bulk electricity generation

Skills, expertise and technology required

- Deformable body numerical modelling
- Materials Engineering / Manufacturing
- *PTO*

Ectacti-Hull

Quoceant

WES Annual Conference

2nd December 2016

Quoceant

Specialists in Marine Energy & Technology

Ectacti-Hull

Project summary

"Making a survivable machine economic or an economic machine survivable"

Technical product or integration offering

Modular, inflatable units to provide gross change of hull volume
Technology applicable to multiple WECs - from point absorbers to surge devices to attenuators

Challenges

Concept feasibility investigated, refined, & proven

→Now to detailed engineering using available technology

Skills, expertise and technology required

•WEC device developers interested in investigating benefits of system to their device.

Ectacti-Hull

Project summary

"Making a survivable machine economic or an economic machine survivable"

Technical product or integration offering

Modular, inflatable units to provide gross change of hull volume
Technology applicable to multiple WECs - from point absorbers to surge devices to attenuators

Challenges

Concept feasibility investigated, refined, & proven

→Now to detailed engineering using available technology

Skills, expertise and technology required

•WEC device developers interested in investigating benefits of system to their device.

